第8章立体几何.doc_第1页
第8章立体几何.doc_第2页
第8章立体几何.doc_第3页
第8章立体几何.doc_第4页
第8章立体几何.doc_第5页
已阅读5页,还剩81页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第8章立体几何学案38空间几何体导学目标: 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.会用斜二测画法画出简单空间图形的直观图自主梳理1多面体的结构特征(1)棱柱的上下底面_,侧棱都_且_,上底面和下底面是_的多边形侧棱和底面_的棱柱叫做直棱柱底面为_的直棱柱叫正棱柱(2)棱锥的底面是任意多边形,侧面是有一个_的三角形棱锥的底面是_,且顶点在底面的正投影是_,这样的棱锥为正棱锥(3)棱台可由_的平面截棱锥得到,其上下底面的两个多边形_被平行于底面的平面所截,截面和底面之间的部分叫正棱台2旋转体的结构特征将矩形、直角三角形、直角梯形分别绕着它的一边、一直角边、垂直于底边的腰所在的直线旋转一周,形成的几何体分别叫做_、_、_,这条直线叫做_垂直于轴的边旋转而成的圆面叫做_半圆绕着它的直径所在的直线旋转一周所形成的曲面叫做_,球面围成的几何体叫做_,简称_3空间几何体的直观图画空间几何体的直观图常用_画法,其规则是:(1)在空间图形中取互相垂直的x轴和y轴,两轴交于O点,再取z轴,使xOz90,且yOz90.(2)画直观图时把它们画成对应的x轴、y轴和z轴,它们相交于点O,并使xOy_,xOz90,x轴和y轴所确定的平面表示水平面(3)已知图形中平行于x轴、y轴或z轴的线段,在直观图中分别画成平行于_的线段(4)已知图形中平行于x轴或z轴的线段,在直观图中保持原长度_,平行于y轴的线段,长度变为_自我检测1下列四个条件能使棱柱为正四棱柱的是_(填序号)底面是正方形,有两个侧面是矩形;底面是正方形,有两个侧面垂直于底面;底面是菱形,具有一个顶点处的三条棱两两垂直;每个侧面都是全等矩形的四棱柱2用任意一个平面截一个几何体,各个截面都是圆,则这个几何体一定是_3如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是_4长方体AC1中,从同一个顶点出发的三条棱长分别是a,b,c,则这个长方体的外接球的半径是_5如图所示,直观图四边形ABCD是一个底角为45,腰和上底均为1的等腰梯形,那么原平面图形的面积是_探究点一空间几何体的结构例1给出下列命题:棱柱的侧棱都相等,侧面都是全等的平行四边形;用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;若有两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;存在每个面都是直角三角形的四面体;棱台的侧棱延长后交于一点其中正确命题的序号是_变式迁移1下列结论正确的是_(填序号)各个面都是三角形的几何体是三棱锥;以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥;棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥;圆锥的顶点与底面圆周上的任意一点的连线都是母线探究点二空间几何体的直观图例2一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于_变式迁移2等腰梯形ABCD,上底CD1,腰ADCB,下底AB3,以下底所在直线为x轴,则由斜二测画法画出的直观图ABCD的面积为_探究点三简单组合体的有关计算例3棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图所示,求图中三角形(正四面体的截面)的面积变式迁移3 如图,一个正方体内接于高为40 cm,底面半径为30 cm的圆锥,则正方体的棱长是_cm.1熟练掌握几何体的结构特征与对应直观图之间的相互转化,正确地识别和画出空间几何体的直观图是解决空间几何体问题的基础和保证2棱柱的分类(按侧棱与底面的位置关系):棱柱3正棱锥问题常归结到它的高、侧棱、斜高、底面正多边形、内切圆半径、外接圆半径、底面边长的一半构成的直角三角形中解决4圆柱、圆锥、圆台、球应抓住它们是旋转体这一特点,弄清旋转轴、旋转面、轴截面5用斜二测画法画出的平面图形的直观图的面积S与原平面图形的面积S之间的关系是SS.(满分:90分)一、填空题(每小题6分,共48分)1下列命题正确的是_(填序号)有两个面平行,其余各面都是四边形的几何体叫棱柱;有一个面是多边形,其余各面是三角形的几何体叫棱锥;有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱2如图为一个简单多面体的表面展开图(沿虚线折叠即可还原)则这个多面体的顶点数为_3圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm2,母线与轴的夹角为45,则这个圆台的高为_cm,母线长为_cm,上、下底面半径分别为_cm和_cm.4如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的,现用一个平面去截这个几何体,若这个平面垂直于圆柱底面所在的平面,那么所截得的图形可能是图中的_(把所有可能的图的序号都填上)5已知水平放置的ABC的直观图ABC(斜二测画法)是边长为a的正三角形,则原ABC的面积为_6棱长为1的正方体ABCDA1B1C1D1的8个顶点都在球O的表面上,E、F分别是棱AA1、DD1的中点,则直线EF被球O截得的线段长为_7(2011四川)如图,半径为R的球O中有一内接圆柱当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是_8(2011连云港模拟)棱长为a的正四面体ABCD的四个顶点均在一个球面上,则此球的半径R为_二、解答题(共42分)9(12分)正四棱台AC1的高是17 cm,两底面的边长分别是4 cm和16 cm,求这个棱台的侧棱长和斜高10(14分)用斜二测画法画出如图中水平放置的四边形OABC的直观图11(16分)一个圆锥的底面半径为2,高为6,在其中有一个高为x的内接圆柱(1)用x表示圆柱的轴截面面积S;(2)当x为何值时,S最大?学案38空间几何体答案自主梳理1(1)平行平行长度相等全等垂直正多边形(2)公共顶点正多边形底面中心(3)平行于棱锥底面相似正棱锥2.圆柱圆锥圆台轴底面球面球体球3.斜二测(2)45(或135)(3)x轴、y轴或z轴(4)不变原来的一半自我检测12球体360解析设母线长为l,底面半径为r,则l2r.,母线与高的夹角为30.圆锥的顶角为60.4.解析长方体的外接球的直径长为长方体的体对角线长,即2R,所以R.5.2解析把直观图还原为平面图形得:直角梯形ABCD中,AB2,BC1,AD1,面积为(2)22.课堂活动区例1解题导引解决这种判断题的关键是:准确理解棱柱、棱锥、棱台的概念;正确运用平行、垂直的判定及性质定理进行判断,整体把握立体几何知识答案解析错误,因为棱柱的底面不一定是正多边形;错误,必须用平行于底面的平面去截棱锥,才能得到棱台;正确,因为三个侧面构成的三个平面的二面角都是直二面角;正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;正确,如图所示,正方体AC1中的四棱锥C1ABC,四个面都是直角三角形;正确,由棱台的概念可知因此,正确命题的序号是.变式迁移1解析错误如图所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥错误如下图,若ABC不是直角三角形或是直角三角形,但旋转轴不是直角边,所得的几何体都不是圆锥错误若六棱锥的所有棱长都相等,则底面多边形是正六边形由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长正确例2解题导引本题是已知直观图,探求原平面图形,考查逆向思维能力要熟悉运用斜二测画法画水平放置的直观图的基本规则,注意直观图中的线段、角与原图中的对应线段、角的关系答案2a2解析根据斜二测画法画平面图形的直观图的规则可知,在x轴上(或与x轴平行)的线段,其长度保持不变;在y轴上(或与y轴平行)的线段,其长度变为原来的一半,且xOy45(或135),所以,若设原平面图形的面积为S,则其直观图的面积为SSS.可以得出一个平面图形的面积S与它的直观图的面积S之间的关系是SS,本题中直观图的面积为a2,所以原平面四边形的面积S2a2.变式迁移2解析OE1,OE,EF,直观图ABCD的面积为S(13).例3解题导引解决这类问题的关键是准确分析出组合体的结构特征,发挥自己的空间想象能力,把立体图和截面图对照分析,有机结合,找出几何体中的数量关系,为了增加图形的直观性,常常画一个截面圆作为衬托解如图所示,ABE为题中的三角形,由已知得AB2,BE2,BFBE,AF ,ABE的面积为SBEAF .所求的三角形的面积为.变式迁移3 120(32)解析作轴截面,PO40 cm,OA30 cm,设BCx,则O1Cx,即,x120(32)课后练习区127解析沿虚线折叠还原得几何体的直观图如下,则这个多面体的顶点数为7.31414721解析画出圆台的轴截面,如图,设O、O分别是上、下底面的中心,作AEDC于E,则有DAE45.由于下底面周长是上底面周长的3倍,所以下底面半径是上底面半径的3倍,若设AEx,则DEx,ABx,CD3x,ADx,于是轴截面的面积为:x(3xx)392,解得x14,则圆台的高等于14 cm,母线长为14cm,上、下底面半径分别为7 cm和21 cm.45.a2解析在斜二测画法中原图面积与直观图面积之比为1,则易知S(a)2,Sa2.6.解析由题知球O半径为,球心O到直线EF的距离为,由垂径定理可知直线EF被球O截得的线段长d2.72R2解析方法一设圆柱的轴与球的半径的夹角为,则圆柱高为2Rcos ,圆柱底面半径为Rsin ,S圆柱侧2Rsin 2Rcos 2R2sin 2.当sin 21时,S圆柱侧最大为2R2,此时,S球表S圆柱侧4R22R22R2.方法二设圆柱底面半径为r,则其高为2.S圆柱侧2r2,S圆柱侧4.令S圆柱侧0,得rR.当0r0;当RrR时,S0.当rR时,S圆柱侧取得最大值2R2.此时S球表S圆柱侧4R22R22R2.方法三设圆柱底面半径为r,则其高为2,S圆柱侧2r2442R2(当且仅当r2R2r2,即rR时取“”)当rR时,S圆柱侧最大为2R2.此时S球表S圆柱侧4R22R22R2.8.a解析如图所示,设正四面体ABCD内接于球O,由D点向底面ABC作垂线,垂足为H,连结AH,OA,则可求得AHa,DH,在RtAOH中,22R2,解得Ra.9解如图所示,设棱台的两底面的中心分别是O1、O,B1C1和BC的中点分别是E1和E,连结O1O、E1E、O1B1、OB、O1E1、OE,则四边形OBB1O1和OEE1O1都是直角梯形(4分)A1B14 cm,AB16 cm,O1E12 cm,OE8 cm,O1B12 cm,OB8 cm,(8分)B1B2O1O2(OBO1B1)2361 cm2,E1E2O1O2(OEO1E1)2325 cm2,(10分)B1B19 cm,E1E5 cm.答这个棱台的侧棱长为19 cm,斜高为5 cm.(12分)10解(1)画x轴,y轴,使xOy45.(4分)(2)在Ox轴上取D、B,使ODOD,OBOB(如图所示),在Oy轴上取C,使OCOC.在Ox轴下方过点D作DAOy,使DADA.(10分)(3)连结OA,AB,CB,所得四边形OABC就是四边形OABC的直观图(14分)11.解(1)画出圆柱和圆锥的轴截面,如图,设圆柱的底面半径为r,则由三角形相似可得,解得r2.(6分)圆柱的轴截面面积S2rx2(2)xx24x.(12分)(2)Sx24x(x3)26当x3时,S的最大值为6.(16分)学案39空间点、线、面之间的位置关系导学目标: 1.理解空间直线、平面位置关系的含义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题自主梳理1平面的基本性质公理1:如果一条直线上的_在一个平面内,那么这条直线上所有的点都在这个平面内公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过_的一条直线公理3:经过_的三点,有且只有一个平面推论1:经过_,有且只有一个平面推论2:经过_,有且只有一个平面推论3:经过_,有且只有一个平面2直线与直线的位置关系(1)位置关系的分类(2)异面直线判定定理过平面内一点与平面外一点的直线,和这个平面内_的直线是异面直线(3)异面直线所成的角定义:设a,b是两条异面直线,经过空间任意一点O,作直线aa,bb,把a与b所成的_叫做异面直线a,b所成的角范围:_.3公理4平行于_的两条直线互相平行4定理如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角_自我检测1若直线a与b是异面直线,直线b与c是异面直线,则直线a与c的位置关系是_2如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线_对3三个不重合的平面可以把空间分成n部分,则n的可能取值为_4(2010全国)直三棱柱ABCA1B1C1中,若BAC90,ABACAA1,则异面直线BA1与AC1所成角的大小为_5下列命题:空间不同三点确定一个平面;有三个公共点的两个平面必重合;空间两两相交的三条直线确定一个平面;三角形是平面图形;平行四边形、梯形、四边形都是平面图形;垂直于同一直线的两直线平行;一条直线和两平行线中的一条相交,也必和另一条相交;两组对边相等的四边形是平行四边形其中正确的命题是_(填序号).探究点一平面的基本性质例1如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AEEBCFFB21,CGGD31,过E、F、G的平面交AD于H,连结EH.(1)求AHHD;(2)求证:EH、FG、BD三线共点变式迁移1如图,E、F、G、H分别是空间四边形AB、BC、CD、DA上的点,且EH与FG相交于点O.求证:B、D、O三点共线探究点二异面直线的判定例2如图所示,直线a、b是异面直线,A、B两点在直线a上,C、D两点在直线b上求证:BD和AC是异面直线变式迁移2 如图是正方体或四面体,P、Q、R、S分别是所在棱的中点,这四个点不共面的是_(填序号)探究点三异面直线所成的角例3(2009全国)已知三棱柱ABCA1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC的中点,则异面直线AB与CC1所成的角的余弦值为_变式迁移3在空间四边形ABCD中,已知AD1,BC,且ADBC,对角线BD,AC,求AC和BD所成的角转化与化归思想例(14分)如图所示,在四棱锥PABCD中,底面是边长为2的菱形,DAB60,对角线AC与BD交于点O,PO平面ABCD,PB与平面ABCD所成的角为60.(1)求四棱锥的体积;(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值多角度审题对(1)只需求出高PO,易得体积;对(2)可利用定义,过E点作PA的平行线,构造三角形再求解【答题模板】解(1)在四棱锥PABCD中,PO平面ABCD,PBO是PB与平面ABCD所成的角,即PBO60,2分在RtAOB中,BOABsin 301,又POOB,POBOtan 60,底面菱形的面积S2222,VPABCD22.7分(2)取AB的中点F,连结EF,DF,E为PB中点,EFPA,DEF为异面直线DE与PA所成角(或其补角)9分在RtAOB中,AOABcos 30,在RtPOA中,PA,EF.在正三角形ABD和正三角形PDB中,DFDE,由余弦定理得cosDEF.12分所以异面直线DE与PA所成角的余弦值为.14分【突破思维障碍】求两条异面直线所成的角的大小,一般方法是通过平行移动直线,把异面问题转化为共面问题来解决根据空间等角定理及推论可知,异面直线所成角的大小与顶点位置无关,往往将角的顶点取在其中的一条直线上特别地,可以取其中一条直线与另一条直线所在平面的交点或异面线段的端点总之,顶点的选择要与已知量有关,以便于计算,具体步骤如下:(1)利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上;(2)证明作出的角即为所求角;(3)利用三角形来求解,异面直线所成角的范围是(0,90【易错点剖析】1求异面直线所成的角时,仅指明哪个角,而不进行证明2忘记异面直线所成角的范围,余弦值回答为负值1利用平面基本性质证明“线共点”或“点共线”问题:(1)证明共点问题,常用的方法是:先证其中两条直线交于一点,再证交点在第三条直线上,有时也可将问题转化为证明三点共线(2)要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理2可知这些点在交线上,因此共线2异面直线的判定方法:(1)定义法:由定义判断两直线不可能在同一平面内;(2)反证法:用此方法可以证明两直线是异面直线;(3)判定定理3求异面直线所成的角的步骤:(1)一般是用平移法(可以借助三角形的中位线、平行四边形等)作出异面直线的夹角;(2)证明作出的角就是所求的角;(3)利用条件求出这个角;(4)如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角(满分:90分)一、填空题(每小题6分,共48分)1和两条异面直线都相交的两条直线的位置关系是_2给出下列命题:若平面上的直线a与平面上的直线b为异面直线,直线c是与的交线,那么c至多与a、b中的一条相交;若直线a与b异面,直线b与c异面,则直线a与c异面;一定存在平面同时和异面直线a、b都平行其中正确的命题为_(填序号)3. 如图所示,在正三角形ABC中,D、E、F分别为各边的中点,G、H、I、J分别为AF、AD、BE、DE的中点,将ABC沿DE、EF、DF折成三棱锥以后,GH与IJ所成角的大小为_4(2009全国改编)已知正四棱柱ABCDA1B1C1D1中,AA12AB,E为AA1的中点,则异面直线BE与CD1所成的角的余弦值为_5正四棱锥SABCD的侧棱长为,底面边长为,E为SA的中点,则异面直线BE和SC所成的角为_6一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:ABEF;AB与CM所成的角为60;EF与MN是异面直线;MNCD.则正确结论的序号是_7下面命题正确的是_(填序号)若直线a、b相交,b、c相交,则a、c相交;若ab,则a、b与c所成的角相等;若a、b与c所成的角相等,则ab;若ab,bc,则ac.8在图中,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有_(填上所有正确答案的序号)二、解答题(共42分)9(14分) 如图所示,正方体ABCDA1B1C1D1中,E,F分别是AB和AA1的中点求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点10(14分)如图,在正方体ABCDA1B1C1D1中,P、Q、M、N分别为AD、AB、C1D1、B1C1的中点,求证:A1PCN,A1QCM,且PA1QMCN.11(14分) 如图,正方体ABCDA1B1C1D1的棱长为2,E为AB的中点求异面直线BD1与CE所成的角的余弦值学案39空间点、线、面之间的位置关系答案自主梳理1两点这个公共点不在同一条直线上一条直线和这条直线外的一点两条相交直线两条平行直线2(1)平行相交(2)不经过该点(3)锐角或直角3.同一条直线4.相等自我检测1平行、相交或异面解析a,c都与直线b异面,并不能确定直线a,c的关系22434,6,7,8460解析将直三棱柱ABCA1B1C1补成如图所示的几何体由已知易知:该几何体为正方体连结C1D,则C1DBA1.异面直线BA1与AC1所成的角为AC1D(或补角),在等边AC1D中,AC1D60.5课堂活动区例1解题导引证明线共点的问题实质上是证明点在线上的问题,其基本理论是把直线看作两平面的交线,点看作是两平面的公共点,由公理2得证(1)解2,EFAC.EF平面ACD.而EF平面EFGH,且平面EFGH平面ACDGH,EFGH.而EFAC,ACGH.3,即AHHD31.(2)证明EFGH,且,EFGH,四边形EFGH为梯形令EHFGP,则PEH,而EH平面ABD,PFG,FG平面BCD,平面ABD平面BCDBD,PBD.EH、FG、BD三线共点变式迁移1证明EAB,HAD,E平面ABD,H平面ABD.EH平面ABD.EHFGO,O平面ABD.同理可证O平面BCD,O平面ABD平面BCD,即OBD,B、D、O三点共线例2解题导引证明两直线为异面直线的方法:1定义法(不易操作)2反证法:先假设两条直线不是异面直线,即两直线平行或相交,由假设的条件出发,经过严密的推理,导出矛盾,从而否定假设肯定两条直线异面此法在异面直线的判定中经常用到3判定定理证明假设BD和AC不是异面直线,则BD和AC共面,设它们共面于.A、B、C、D,AB、CD,即a、b.这与a、b是异面直线矛盾,故假设不成立BD和AC是异面直线变式迁移2 例3解题导引高考中对异面直线所成角的考查,一般出现在综合题的某一步,求异面直线所成角的一般步骤为:(1)平移:选择适当的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊位置的点,如线段的中点或端点,也可以是异面直线中某一条直线上的特殊点(2)证明:证明所作的角是异面直线所成的角(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之(4)取舍:因为异面直线所成角的取值范围是090,所以所作的角为钝角时,应取它的补角作为异面直线所成的角答案解析如图,A1D平面ABC,且D为BC的中点,设三棱柱的各棱长为1,则AD,由A1D平面ABC知A1D,RtA1BD中,易求A1B.CC1AA1,AB与AA1所成的角即为AB与CC1所成的角在A1BA中,由余弦定理可知cosA1AB.AB与CC1所成的角的余弦值为.变式迁移3解如图所示,分别取AD、CD、AB、BD的中点E、F、G、H,连结EF、FH、HG、GE、GF.由三角形的中位线定理知,EFAC,且EF,GEBD,且GE.GE和EF所成的锐角(或直角)就是AC和BD所成的角同理,GHAD,HFBC.GH,HF,又ADBC,GHF90,GF2GH2HF21.在EFG中,EG2EF21GF2,GEF90,即AC和BD所成的角为90.课后练习区1异面或相交2解析错,c可与a、b都相交;错,因为a、c可能相交也可能平行;正确,例如过异面直线a、b的公垂线段的中点且与公垂线垂直的平面即可满足条件360解析将三角形折成三棱锥,如图所示,HG与IJ为一对异面直线,过D分别作HG与IJ的平行线,因GHDF,IJAD,所以ADF为所求,因此HG与IJ所成的角为60.4.解析如图所示,连结A1B,则A1BC D1,故异面直线BE与CD1所成的角即为BE与A1B所成的角设ABa,则A1Ea,A1Ba,BEa.A1BE中,由余弦定理得cosA1BE.560解析设AC与BD的交点为O,则OESC,BEO(或其补角)即为异面直线BE和SC所成的角,EOSC,BOBD,在SAB中,cos A在ABE中,cos A,BE.在BEO中,cosBEO,BEO60.6解析把正方体的平面展开图还原成原来的正方体,如图所示,易知ABEF,ABCM,EF与MN异面,MNCD,故正确78(2)(4)9证明(1)如图所示,连结CD1,EF,A1B,E、F分别是AB和AA1的中点,EFA1B,且EFA1B,(2分)又A1D1綊BC,四边形A1BCD1是平行四边形,A1BCD1,EFCD1,EF与CD1确定一个平面,E,F,C,D1,即E,C,D1,F四点共面(6分)(2)由(1)知EFCD1,且EFCD1,四边形CD1FE是梯形,CE与D1F必相交,设交点为P,(8分)则PCE平面ABCD,且PD1F平面A1ADD1,P平面ABCD且P平面A1ADD1.(10分)又平面ABCD平面A1ADD1AD,PAD,CE,D1F,DA三线共点(14分)10证明如图所示,在A1B1上取中点K,易知四边形MKBC为平行四边形(3分)CMBK.又A1KBQ,且A1KBQ,四边形A1KBQ为平行四边形,A1QBK,(9分)由公理4有A1QMC,(10分)同理可证A1PCN,由于PA1Q与MCN对应边分别平行,且方向相反PA1QMCN.(14分)11解延长DC至G,使CGEB,连结BG、D1G,CG綊EB,四边形EBGC是平行四边形BGEC.D1BG就是异面直线BD1与CE所成的角(6分)在D1BG中,D1B2,BG,D1G.cosD1BG.异面直线BD1与CE所成角的余弦值是.(14分)学案40空间的平行关系导学目标: 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面、面面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的平行关系的简单命题自主梳理1空间直线与平面、平面与平面的位置关系(1)直线a和平面的位置关系有三种:_、_、_.(2)两个平面的位置关系有两种:_和_2直线与平面平行的判定与性质(1)判定定理:如果平面外一条直线和这个_平行,那么这条直线与这个平面平行(2)性质定理:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行3平面与平面平行的判定与性质(1)判定定理:如果一个平面内有_都平行于另一个平面,那么这两个平面平行(2)性质定理:如果两个平行平面同时和第三个平面相交,那么所得的两条交线_自我检测1下列各命题中:平行于同一直线的两个平面平行;平行于同一平面的两个平面平行;一条直线与两个平行平面中的一个相交,那么这条直线必和另一个相交;垂直于同一直线的两个平面平行不正确的命题个数是_2经过平面外的两点作该平面的平行平面,可以作_个3一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是_4(2010济南模拟)已知、是不同的两个平面,直线a,直线b,命题p:a与b没有公共点;命题q:,则p是q的_条件5(2010南京二模)在四面体ABCD中,M、N分别是ACD、BCD的重心,则四面体的四个面中与MN平行的是_探究点一线面平行的判定例1已知有公共边AB的两个全等的矩形ABCD和ABEF不在同一平面内,P、Q分别是对角线AE、BD上的点,且APDQ.求证:PQ平面CBE.变式迁移1在四棱锥PABCD中,四边形ABCD是平行四边形,M、N分别是AB、PC的中点,求证:MN平面PAD.探究点二面面平行的判定例2在正方体ABCDA1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点,求证:平面MNP平面A1BD.变式迁移2已知P为ABC所在平面外一点,G1、G2、G3分别是PAB、PCB、PAC的重心(1)求证:平面G1G2G3平面ABC;(2)求SG1G2G3SABC.探究点三平行中的探索性问题例3如图所示,在四棱锥PABCD中,CDAB,ADAB,ADDCAB,BCPC.(1)求证:PABC;(2)试在线段PB上找一点M,使CM平面PAD,并说明理由变式迁移3如图所示,在正方体ABCDA1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ平面PAO?1直线与平面平行的主要判定方法:(1)定义法;(2)判定定理;(3)面与面平行的性质定理2平面与平面平行的主要判定方法:(1)定义法;(2)判定定理;(3)利用结论:a,a.3线线平行、线面平行、面面平行间的相互转化:线线线面面性质判定面(满分:90分)一、填空题(每小题6分,共48分)1下列命题中真命题的个数为_直线l平行于平面内的无数条直线,则l;若直线a在平面外,则a;若直线ab,直线b,则a;若直线ab,b,那么直线a就平行于平面内的无数条直线2给出下列命题,其中正确的命题是_(填序号)直线上有两点到平面的距离相等,则此直线与平面平行;夹在两个平行平面间的两条异面线段的中点连线平行于这两个平面;直线m平面,直线nm,则n;a、b是异面直线,则存在唯一的平面,使它与a、b都平行且与a、b距离相等3设l1、l2是两条直线,、是两个平面,A为一点,有下列四个命题,其中正确命题的个数是_若l1,l2A,则l1与l2必为异面直线;若l1,l2l1,则l2;若l1,l2,l1,l2,则;若,l1,则l1.4在四面体ABCD中,截面PQMN是正方形,则下列命题中,正确的为_(填序号)ACBD;AC截面PQMN;ACBD;异面直线PM与BD所成的角为45.5下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB面MNP的图形的序号是_(写出所有符合要求的图形序号)6(2010大连模拟)过三棱柱ABCA1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的有_条7. 如图所示,ABCDA1B1C1D1是棱长为a的正方体,M,N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ_.8已知平面平面,P是、外一点,过点P的直线m与、分别交于A、C,过点P的直线n与、分别交于B、D且PA6,AC9,PD8,则BD的长为_二、解答题(共42分)9(12分) 如图所示,在三棱柱ABCA1B1C1中,M、N分别是BC和A1B1的中点求证:MN平面AA1C1C.10(14分)(2010湖南改编) 如图所示,在正方体ABCDA1B1C1D1中,E是棱DD1的中点在棱C1D1上是否存在一点F,使B1F平面A1BE?证明你的结论11(16分) (2010济宁一模)如图,四边形ABCD为矩形,DA平面ABE,AEEBBC2,BF平面ACE,且点F在CE上(1)求证:AEBE;(2)求三棱锥DAEC的体积;(3)设点M在线段AB上,且满足AM2MB,试在线段CE上确定一点N,使得MN平面DAE.学案40空间的平行关系答案自主梳理1(1)平行相交在平面内(2)平行相交2.(1)平面内的一条直线3.(1)两条相交直线(2)平行自我检测112.0或13.平行4.必要不充分5面ABC和面ABD课堂活动区例1解题导引证明线面平行问题一般可考虑证线线平行或证面面平行,要充分利用线线平行、线面平行、面面平行的相互转化证明方法一如图所示,作PMAB交BE于M,作QNAB交BC于N,连结MN.矩形ABCD和矩形ABEF全等且有公共边AB,AEBD.又APDQ,PEQB,又PMABQN,.PM綊QN,四边形PQNM为平行四边形,PQMN又MN平面BCE,PQ平面BCE,PQ平面BCE.方法二如图所示,连结AQ,并延长交BC于K,连结EK,AEBD,APDQ,PEBQ,.又ADBK,. 由得,PQEK.又PQ平面BCE,EK平面BCE,PQ平面BCE.方法三如图所示,在平面ABEF内,过点P作PMBE,交AB于点M,连结QM.PMBE,PM平面BCE,PM平面BCE,且.又APDQ,PEBQ,. 由得,MQAD,MQBC,又MQ平面BCE,BC平面BCE,MQ平面BCE.又PMMQM,平面PMQ平面BCE,又PQ平面PMQ,PQ平面BCE.变式迁移1证明方法一取CD中点E,连结NE、ME、MN.M、N分别是AB、PC的中点,NEPD,MEAD.又NE,ME平面PAD,PD,AD平面PAD,NE平面PAD,ME平面PAD.又NEMEE,平面MNE平面PAD.又MN平面MNE,MN平面PAD.方法二取PD中点F,连结AF、NF、NM.M、N分别为AB、PC的中点,NF綊CD,AM綊CD,AM綊NF.四边形AMNF为平行四边形,MNAF.又AF平面PAD,MN平面PAD,MN平面PAD.例2解题导引面面平行的常用判断方法有:(1)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(2)利用垂直于同一条直线的两个平面平行;关键是利用“线线平行”、“线面平行”、“面面平行”的相互转化证明方法一如图所示,连结B1D1、B1C.P、N分别是D1C1、B1C1的中点,PNB1D1.又B1D1BD,PNBD.又PN面A1BD,PN平面A1BD.同理MN平面A1BD.又PNMNN,平面MNP平面A1BD.方法二如图所示,连结AC1、AC.ABCDA1B1C1D1为正方体,ACBD.又CC1面ABCD,BD面ABCD,CC1BD,BD面ACC1,又AC1面ACC1,AC1BD.同理可证AC1A1B,AC1平面A1BD.同理可证AC1平面PMN,平面PMN平面A1BD.变式迁移2(1)证明如图所示,连结PG1、PG2、PG3并延长分别与边AB、BC、AC交于点D、E、F,连结DE、EF、FD,则有PG1PD23,PG2PE23,G1G2DE.又G1G2不在平面ABC内,DE在平面ABC内,G1G2平面ABC.同理G2G3平面ABC.又因为G1G2G2G3G2,平面G1G2G3平面ABC.(2)解由(1)知,G1G2DE.又DEAC,G1G2AC.同理G2G3AB,G1G3BC.G1G2G3CAB,其相似比为13,SG1G2G3SABC19.例3解题导引近几年探索性问题在高考中时有出现,解答此类问题时先以特殊位置尝试探究,找到符合要求的点后再给出严格证明(1)证明连结AC,过点C作CEAB,垂足为E.在四边形ABCD中,ADAB,CDAB,ADDC,四边形ADCE为正方形ACDACE45.AECDAB,BEAECE.BCE45.ACBACEBCE454590.ACBC.又BCPC,AC平面PAC,PC平面PAC,ACPCC,BC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论