数学人教版七年级上册魔术中的数学:“十三点的奥秘”.doc_第1页
数学人教版七年级上册魔术中的数学:“十三点的奥秘”.doc_第2页
数学人教版七年级上册魔术中的数学:“十三点的奥秘”.doc_第3页
数学人教版七年级上册魔术中的数学:“十三点的奥秘”.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

魔术中的数学:“十三点的奥秘”说课稿江西省高安中学 姚勇一、教学背景及相关说明: 魔术中的数学是一节数学活动课,它的素材来源于开明出版社邢富冲、王伟编著的趣味学习520书。教者将其进行了较大的改编和归化。整个活动课共分为两课时,十三点的奥秘是第一课时内容,主要与学生共同探讨该扑克魔术中所蕴涵的数学现象和数学规律。第二课时的内容主要是与学生共同探讨如何利用相关数学规律构建一些与数学相关的魔术。 就本课研究的内容来看,时间安排应在学生学完初中代数第一册第一章之后进行活动为好,因为本课中所涉及到的数学建模需用到有关代数式的知识及规律探究分析知识。当能,也可安排在中学的其他任何学段,学生的知识层次越高,学生所获得的理性感悟相对而言也就越大。二、教学目标的确定: 遵循新课程标准中所提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观念等诸多方面得到进步和发展”的观念,本课的教学目标是力求所“自主探索、动手实践、合作交流”成为学生的主要活动方式。具体目标分为以下三个方面: 1、德育目标:通过本课学习,使学生更深刻地感悟到表象的本身有着其内在的、本质的、必然的联系,即客观规律。同时教给学生观察猜想、实践验证、客观应用的事物认知规律,所学生掌握由具体到抽象、由特殊到般的辩证唯物主义的方法论。 2、能力目标:通过本课学习,使学生掌握应用数学知识研究客观事物的一般方法。即: 客观事物数学模型数学研究客观事物,提高学生分析解决问题的能力,培养学生思维的灵活性和创造性,提高学生动手的能力和探究问题的能力。 3、情感目标:鼓励学生用数学的观点去观察、去思考和解决实际生活中的问题,使学生感受到数学的多姿多彩与生动活泼。觉得数学好玩,使学生在玩中不知不觉接受数学,学好数学。三、教学方法的选用及学法指导:本课的教学方法主要采用:教师直观演示学生自主探讨共同建模分析。使学生明白数学源于实践又反过来作用于实践。在学法方面教师要鼓励学生大胆猜想,勇于实践,善于归纳和推广。四、教具选择: 本课教具主要是:扑克若干副,用于学生自主探讨。同时辅以多媒体演示建模,使抽象的建模过程更加直观。五、重点与难点分析: 由于学生很难将所观察到的魔术现象与所学过的数学知识联系起来,因此,本课教学重点应当是如何引导学生自主探索现象中所蕴涵的规律,并将其转化成数学模型加以研究。难点是规律的探寻与推广。六、教学程序设计:教学流程教学活动学生活动设计意图及说明时间安排直观演示教师直接表演魔术,过程如下:1、分牌:将一副牌去掉大小王,再将其一半张一张牌面向上数出来,每张牌牌面要交代清楚。2、反扣:将分出的牌摞成一摞,牌面向下反扣桌上。3、 抽牌:将手巾余牌让学生从 中抽出三张,交代清楚牌而点数。4、十三点:将所抽牌面向上, 并排摆好,从每张牌的点数 开起,在它的下面加进手中 余牌,每加一张加一点,一 直到十三点为止。(若手中 余牌不够,则从桌上从上下逐一取牌)5、叠牌:将手中余牌全都叠在 原先反扣在桌上的那半副牌的上面。6、猜牌:让学生把抽取的那三张牌的点数相加,算出总和m,再要学生猜出桌上那摞牌从上往下第m张牌的牌面。仔细观察合理猜想1、引导学生观察魔术现象,从而使学生对本课充满好奇,急于探索谜底。2、考虑到学生的认知规律,最好进行两遍表演,因为第一遍学生往往“新”多于“奇”。3、表演过程中必须强调具体的可操作的步骤,使学生下面的自主探索能独立完成。同时为下一步数学建模作好铺垫。4、由于每次所抽取的牌的点数是随机的,所以这三张牌的点数之和事先谁都不知道,但我们每次总能准确的说出第m张牌的牌面,对于这一现象学生在观察表演的过程中已充满了好奇,为下一步自主探索作了很好的铺垫。五分钟左右自主探索教师各组巡视,作适当提示、点拨将学生六个人分成一个小组,每个小组人员合适的分工,用扑克自主探寻魔术谜底,得出结论:第十六张牌牌面即为谜底。考虑到学生认知层次的不同,教师可用适当的语言加以点拨,为学生的自我探索指明方向。十分钟左右分析建模规律探寻一、教师提问设疑:为什么恰好会是第十六张牌?如果不用扑克牌实践,能否用数学方法来解释这一现象?二、教师与学生一道回忆表演过程并进行分析、建模;1、分牌:2625321 将所分的牌按顺序抽象成如右图(1)示的数学模型。 手中余牌: 张?2、倒扣: 将图(1)用动画演示倒扣过程。 如图(2)1232526图(1)图(2) 手中余牌: 张?3、抽牌:z zY Yxx 将所抽三张牌的点数抽象成x、y z如图(3) 手中余牌: 张?图(3)4、十三点:11122213-x13-y13-z 将手中余牌与所抽牌的点数 加成十三点。如图(4) 手巾余牌: 张?5、叠牌:123.2526 将手中余牌叠在原先反扣的那摞牌1213-x 的上面。如图(5)图(5)三、规律探寻; 手中余牌比x、y、z的和还少 张。故应是桌面上的第 张。 用动画演示建模过程,使学生易于理解。分析过程要力求学生自主完成。 十分钟左右变式训练1、如果加上大、小王,进行操作,应是第几张?请学生 分析解答。2、是不是一定要一副扑克牌呢?如果扑克牌为2m张, 按上述操作后应是第几张?3、两副扑克牌:行不行?为什么?4、扑克牌的张数是不是一定要是偶数?是不是一定要平 均分牌?5、如果有(mn)张扑克牌,将m张牌分出后倒扣桌上, 将n张牌进行抽牌、加点、叠放后,进行猜牌,问这是m张中的第几张牌? 变式的目的是训练学生的类比、归化能力,同时培养学生的应变能力,使学生能透过表象看到本质。 考虑到学牛的认知层次,在进行变式训练时应允许学生出现一些片面的、不充分的、甚至不合理的结论。课堂小结1、通过本课学习,你学到了什么思想方法?(自我评价)2、通过本课学习,你在数学方面有那些收获? (自我评价)作业 小论文:十三点的奥秘小结(1)主要是与学生一道总结观察、处理客观问题的方法。 小结(2)主要是与学生一道总结如何运用数学知识来分析客观现象。五分钟左右版书设计十三点的奥秘步骤1、分牌2、反扣3、抽牌4、十三点5、叠牌图示手中余牌教学后记: 一、“大众数学”必将成为我国21世纪上半叶中小学数学教学的主旋律。 二、“大众数学”意义下的数学教育体系所追求的教育目标是: 1、人人学“有用”的数学。 2、人人掌握“必需”的数学。3、不同的入学习不同的数学。 三、数学课程改革的基本思路是: 1、以反映未来社会对公民所必需的数学思想方法为主线选择和安排教学内容。 2、以与学生年龄特征相适应的大众化、生活化的方式呈现教学内容。 3、使学生在数学活动中,在现实生活中学习数学,发展数学。 摘自数学课程标准解读 、基于此,关于本节学生的数学学习过程,教者所追求的是: 1、让学生的数学学习过程是建立在经验基础上的一个主动建构的过程。 2、让学生的数学学习过程是一个充满了观察、实验、猜想、验证、推理与交流等丰富多彩的数学活动过程。 3、让学生的数学学习过程变成一个富有个性,体现多样化学习需求的过程。 当然,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论