




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
定积分 求由连续曲线y f x 对应的曲边梯形面积的方法 2 以直代曲 任取xi xi 1 xi 第i个小曲边梯形的面积用高为f xi 宽为dx的小矩形面积f xi dx近似地去代替 4 逼近 所求曲边梯形的面积s为 3 作和 取n个小矩形面积的和作为曲边梯形面积s的近似值 xi 1 xi xi 1 分割 在区间 a b 上等间隔地插入n 1个点 将它等分成n个小区间 每个小区间宽度 x 如果当n 时 sn就无限接近于某个常数 这个常数为函数f x 在区间 a b 上的定积分 记作 从求曲边梯形面积s的过程中可以看出 通过 四个步骤 分割 以直代曲 求和 逼近 设函数f x 在区间 a b 上有定义 将区间 a b 等分成n个小区间 每个区间的长度为 x 在每个区间上取一点 依次为x1 x2 xi xn 作和sn f x1 x f x2 x f xi x f xn x 如果 x无限趋近于0 亦即n趋向于 时 sn无限趋近于常数s 那么称该常数为函数f x 在区间 a b 上的定积分 记作 一 定积分的定义 定积分的相关名称 叫做积分号 f x dx 叫做被积表达式 f x 叫做被积函数 x 叫做积分变量 a 叫做积分下限 b 叫做积分上限 a b 叫做积分区间 积分下限 积分上限 按定积分的定义 有 1 由连续曲线y f x f x 0 直线x a x b及x轴所围成的曲边梯形的面积为 2 设物体运动的速度v v t 则此物体在时间区间 a b 内运动的距离s为 3 设物体在变力f f r 的方向上有位移 则f在位移区间 a b 内所做的功w为 1 说明 1 定积分是一个数值 它只与被积函数及积分区间有关 而与积分变量的记法无关 即 4 定积分的几何意义 x a x b与x轴所围成的曲边梯形的面积 当f x 0时 由y f x x a x b与x轴所围成的曲边梯形位于x轴的下方 s 上述曲边梯形面积的负值 4 定积分的几何意义 s 定积分的几何意义 在区间 a b 上曲线与x轴所围成图形面积的代数和 即x轴上方的面积减去x轴下方的面积 例 计算下列定积分 三 定积分的基本性质 性质1 性质2 三 定积分的基本性质 定积分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版农业科技推广项目农药产品销售合作协议
- 2025年网络安全风险评估与安全协议完善合同
- 2025年智慧城市建设承包经营合同范本
- 2025版外墙装修工程索赔处理合同
- 2025年度石料贸易代理服务合同规范
- 2025版双方自愿离婚协议书法律效力评估规范
- 2025年度琼台师范学院产学研合作协议
- 2025年劳动合同制员工职业健康安全合同
- 2025年度体育赛事赞助保证合同-体育赛事风险防控保障
- 2025年度办公大楼绿化养护与景观设计服务合同
- 田英章楷书心经-高清米字格版
- 2021年成都中医药大学辅导员招聘考试题库及答案解析
- 液相色谱柱使用记录
- 项目检查汇报报告(52张)课件
- 直螺纹套筒现场平行检查及记录表
- 精选芭蕾舞男女演员之间的潜规则汇总
- JJG 856-2015 工作用辐射温度计检定规程-(高清现行)
- 新人教版小学美术五年级上册教学设计(全册)
- 益美高引风式冷却塔特点介绍
- 1沥青混合料生产工艺
- 相亲相爱 简谱
评论
0/150
提交评论