




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
递推数列题型归纳解析 数列是高中代数的重要内容之一,也是与大学衔接的内容,由于在测试学生逻辑推理能力和理性思维水平,以及考查学生创新意识和创新能力等方面有不可替代的作用,所以在历年高考中占有重要地位,近几年更是有所加强. 解答题大多以考查等差、等比数列、简单的递推数列为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中档难度的题目。而各种数列问题在很多情形下,就是对数列通项公式的求解。特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。类型1 解法:把原递推公式转化为,利用累加法求解。例:已知数列满足,求。解:由条件知:分别令,代入上式得个等式累加之,即所以,类型2 解法:把原递推公式转化为,利用累乘法求解。例:已知数列满足,求。解:由条件知,分别令,代入上式得个等式累乘之,即又,类型3 (其中p,q均为常数,)。例:已知数列中,求.解法一(归纳法): 解法二(待定系数法):设递推公式可以转化为即.故递推公式为,令,则,且.所以是以为首项,2为公比的等比数列,则,所以.解法四(作商法): 令 累加得: 类型4 (其中p,q均为常数,)。 (或,其中p,q, r均为常数) 。解法:一般地,要先在原递推公式两边同除以,得:引入辅助数列(其中),得:再同类型3求解。例:已知数列中,,,求。解:在两边乘以得:令,则,解之得:所以类型5 解法:这种类型一般利用待定系数法构造等比数列,即令,与已知递推式比较,解出,从而转化为是公比为的等比数列。例:设数列:,求.解:设,将代入递推式,得()则,又,故代入()得说明:(1)若为的二次式,则可设;(2)本题也可由 ,()两式相减得转化为求之. 类型6 递推公式为与的关系式。(或)解法:这种类型一般利用与消去 或与消去进行求解。例:已知数列前n项和.(1)求与的关系;(2)求通项公式.解:(1)由得:于是所以.(2)应用类型4(其中p,q均为常数,)的方法,上式两边同乘以得:由.于是数列是以2为首项,2为公差的等差数列,所以类型7 递推公式为(其中p,q均为常数)。解法一(待定系数法):先把原递推公式转化为其中s,t满足解法二(特征根法):对于由递推公式,给出的数列,方程,叫做数列的特征方程。若是特征方程的两个根,当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组);当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组)。例: 已知数列中, ,求数列的通项公式。解法一(待定系数迭加法):由,得,且。则数列是以为首项,为公比的等比数列,于是。把代入,得,。把以上各式相加,得。解法二(特征根法):数列:, 的特征方程是:。,。又由,于是故类型8 解法:这种类型一般是等式两边取对数后转化为,再利用待定系数法求解。例:已知数列中,求数列解:由两边取对数得,令,则,再利用待定系数法解得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临聘导游合同范本
- 磷脂销售合同范本
- 婚庆公司承揽合同范本
- 模具研发协议合同范本
- 闲置家居售卖合同范本
- 新车购买合同范本赠品
- 社区工作基础知识培训课件
- 翻砂成品采购合同范本
- 微信销售合同范本
- 外贸口罩销售合同范本
- 中华护理学会团体标准|2024 针刺伤预防与处理
- 江西国泰集团股份有限公司考试真题2024
- 《电解质失衡课件讲解》课件
- 肌少症知识试题及答案
- 2025-2030中国陶瓷涂料行业市场发展趋势与前景展望战略研究报告
- 国家电网有限公司输变电工程通 用设计(330~750kV输电线路绝缘子金具串通 用设计分册)2024版
- 蜘蛛人作业培训
- 施工照片拍摄培训课件
- 网络安全运维培训内容
- 【中信建投】信息技术-人工智能行业AI产品深度拆解(系列1)-可灵:头部AI视频产品
- 广西桉树造林技术改进及病虫害防治措施深入研究
评论
0/150
提交评论