3-导数的应用习题课.ppt_第1页
3-导数的应用习题课.ppt_第2页
3-导数的应用习题课.ppt_第3页
3-导数的应用习题课.ppt_第4页
3-导数的应用习题课.ppt_第5页
已阅读5页,还剩55页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二 导数应用 习题课 一 微分中值定理及其应用 中值定理及导数的应用 第三章 3 lijuan 一 微分中值定理及其应用 1 微分中值定理及其相互关系 罗尔定理 柯西中值定理 2 微分中值定理的主要应用 1 研究函数或导数的性态 2 证明恒等式或不等式 3 证明有关中值问题的结论 3 有关中值问题的解题方法 利用逆向思维 设辅助函数 一般解题方法 证明含一个中值的等式或根的存在 可用原函数法找辅助函数 多用罗尔定理 2 若结论中涉及到含中值的两个不同函数 可考虑用 柯西中值定理 4 lijuan 3 若结论中含两个或两个以上的中值 必须多次应用 中值定理 4 若已知条件中含高阶导数 多考虑用泰勒公式 5 若结论为不等式 要注意适当放大或缩小的技巧 有时也可考虑对导数用中值定理 5 lijuan 6 lijuan 7 lijuan 8 lijuan 9 lijuan 10 lijuan 11 lijuan 12 lijuan 13 lijuan 14 lijuan 15 lijuan 16 lijuan 17 lijuan 18 lijuan 19 lijuan 20 lijuan 21 lijuan 22 lijuan 23 lijuan 24 lijuan 25 lijuan 26 lijuan 27 lijuan 28 lijuan 29 lijuan 30 lijuan 31 lijuan 32 lijuan 33 lijuan 34 lijuan 35 lijuan 36 lijuan 37 lijuan 38 lijuan 39 lijuan 40 lijuan 41 lijuan 42 lijuan 43 lijuan 44 lijuan 45 lijuan 46 lijuan 47 lijuan 补充例题 设函数 在 内可导 且 证明 在 内有界 证 取点 再取异于 的点 对 为端点的区间上用拉氏中值定理 得 定数 可见对任意 即得所证 48 lijuan 例 设 在 内可导 且 证明至少存在一点 使 上连续 在 证 问题转化为证 设辅助函数 显然 在 0 1 上满足罗尔定理条件 故至 使 即有 少存在一点 49 lijuan 例 且 试证存在 证 欲证 因f x 在 a b 上满足拉氏中值定理条件 故有 将 代入 化简得 故有 即要证 50 lijuan 例 设实数 满足下述等式 证明方程 在 0 1 内至少有一 个实根 证 令 则可设 且 由罗尔定理知存在一点 使 即 51 lijuan 例 设函数f x 在 0 3 上连续 在 0 3 内可导 且 分析 所给条件可写为 03考研 试证必存在 想到找一点c 使 证 因f x 在 0 3 上连续 所以在 0 2 上连续 且在 0 2 上有最大值M与最小值m 故 由介值定理 至少存在一点 由罗尔定理知 必存在 52 lijuan 的连续性及导函数 例 填空题 1 设函数 其导数图形如图所示 单调减区间为 极小值点为 极大值点为 提示 的正负作f x 的示意图 单调增区间为 53 lijuan 在区间上是凸弧 拐点为 提示 的正负作f x 的示意图 形在区间上是凹弧 则函数f x 的图 2 设函数 的图形如图所示 机动目录上页下页返回结束 54 lijuan 例 证明 在 上单调增加 证 令 在 x x 1 上利用拉氏中值定理 故当x 0时 从而 在 上单调增 得 55 lijuan 例 求数列 的最大项 证 设 用对数求导法得 令 得 因为 在 只有唯一的极大点 因此在 处 也取最大值 又因 中的最大项 极大值 列表判别 56 lijuan 例 证 只要证 利用一阶泰勒公式 得 故原不等式成立 57 lijuan

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论