




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 充分条件与必要条件学习目标1.理解充分条件、必要条件、充要条件的定义.2.会求某些简单问题成立的充分条件、必要条件、充要条件.3.能够利用命题之间的关系判定充要关系或进行充要条件的证明.知识点一充分条件与必要条件“若p,则q”形式的命题为真命题是指:由条件p可以得到结论q,通常记作:pq,读作“p推出q”.此时我们称p是q的_条件,同时,我们称q是p的_条件.若pq,但qp,称p是q的_条件,若qp,但pq,称p是q的_条件.知识点二充要条件思考在ABC中,角A、B、C为它的三个内角,则“A、B、C成等差数列”是“B60”的什么条件?梳理(1)一般地,如果既有pq,又有qp,就记作pq,此时,我们说,p是q的_条件,简称充要条件.(2)充要条件的实质是原命题“若p,则q”和其逆命题“若q,则p”均为真命题,如果p是q的充要条件,那么q也是p的充要条件,即如果pq,那么p与q互为充要条件.(3)从集合的角度判断充分条件、必要条件和充要条件.若AB,则p是q的充分条件,若AB,则p是q的充分不必要条件若BA,则p是q的必要条件,若BA,则p是q的必要不充分条件若AB,则p,q互为充要条件若AB且BA,则p既不是q的充分条件,也不是q的必要条件其中p:Ax|p(x)成立,q:Bx|q(x)成立.类型一判断充分条件、必要条件、充要条件命题角度1在常见数学问题中的判断例1下列各题中,p是q的什么条件?(1)p:ab0,q:a2b20;(2)p:四边形的对角线相等,q:四边形是矩形;(3)p:x1或x2,q:x1;(4)p:m0的解集是R,q:0a4;(2)p:|x2|3,q:1;(3)p:ABA,q:ABB;(4)p:q:命题角度2在实际问题中的判断例2如图所示的电路图中,“闭合开关A”是“灯泡B亮”的什么条件?反思与感悟“充分”的含义是“有它即可”,“必要”的含义是“无它不可”.用日常生活中的现象来说明“条件”和“结论”之间的关系,更容易理解和接受.用“条件”和“结论”之间的关系来解释生活中的现象,更加明白、透彻.跟踪训练2俗语云“好人有好报”,“好人”是“有好报”的()A.充分条件 B.必要条件C.既不充分又不必要条件 D.无法判断类型二充要条件的探求与证明命题角度1充要条件的探求例3求ax22x10至少有一个负实根的充要条件是什么?反思与感悟探求一个命题的充要条件,可以利用定义法进行探求,即分别证明“条件结论”和“结论条件”,也可以寻求结论的等价命题,还可以先寻求结论成立的必要条件,再证明它也是其充分条件.跟踪训练3已知数列an的前n项和Sn(n1)2t(t为常数),试问t1是否为数列an是等差数列的充要条件?请说明理由.命题角度2充要条件的证明例4已知A,B是直线l上的任意两点,O是直线l外一点,求证:点P在直线l上的充要条件是xy,其中x,yR,且xy1.反思与感悟证明充要条件时要从充分性和必要性两个方面分别证明,首先分清哪个是条件,哪个是结论,然后确定推出方向,即充分性需要证明“条件”“结论”,必要性需要证明“结论”“条件”.跟踪训练4已知ab0,求证:ab1是a3b3aba2b20的充要条件.类型三利用充分条件、必要条件求参数的值(或范围)例5已知函数f(x)的定义域为A,g(x)lg(xa1)(2ax)(a1)的定义域为B.(1)求A;(2)记p:xA,q:xB,若p是q的必要不充分条件,求实数a的取值范围.反思与感悟在有些含参数的充要条件问题中,要注意将条件p和q转化为集合,从而转化为两集合之间的子集关系,再转化为不等式(或方程),从而求得参数的取值范围.根据充分条件或必要条件求参数范围的步骤:(1)记集合Mx|p(x),Nx|q(x);(2)若p是q的充分不必要条件,则MN,若p是q的必要不充分条件,则NM,若p是q的充要条件,则MN;(3)根据集合的关系列不等式(组);(4)求出参数的范围.跟踪训练5设Ay|y,xR,By|yxm,x1,1,记命题p:“yA”,命题q:“yB”,若p是q的必要不充分条件,则m的取值范围为_.1.人们常说“无功不受禄”,这句话表明“受禄”是“有功”的()A.充分条件 B.必要条件C.充要条件 D.既不充分又不必要条件2.设命题p:x23x20,q:0,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件3.“x24x50”是“x5”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件 4.记不等式x2x60的解集为集合A,函数ylg(xa)的定义域为集合B.若“xA”是“xB”的充分条件,则实数a的取值范围为_.5.“a0”是“直线l1:x2ay10与l2:2x2ay10平行”的_条件.充分不必要条件、必要不充分条件、充要条件、既不充分又不必要条件反映了条件p和结论q之间的因果关系,在结合具体问题进行判断时,常采用如下方法:(1)定义法:分清条件p和结论q,然后判断“pq”及“qp”的真假,根据定义下结论.(2)等价法:将命题转化为另一个与之等价的又便于判断真假的命题.(3)集合法:写出集合Ax|p(x)及集合Bx|q(x),利用集合之间的包含关系加以判断.提醒:完成作业第一章2答案精析2充分条件与必要条件问题导学知识点一充分必要充分不必要必要不充分知识点二思考因为A、B、C成等差数列,故2BAC,又因为ABC180,故B60,反之,亦成立,故“A、B、C成等差数列”是“B60”的充分必要条件.梳理(1)充分必要题型探究例1解(1)ab0a2b20;a2b20ab0,p是q的必要不充分条件.(2)四边形的对角线相等四边形是矩形;四边形是矩形四边形的对角线相等,p是q的必要不充分条件.(3)x1或x2x1;x1x1或x2,p是q的充要条件.(4)若方程x2xm0无实根,则14m0,即m.m1m;mm0满足题意;当a0时,由可得0a4.故p是q的必要不充分条件.(2)易知p:1x5,q:1x5,所以p是q的充要条件.(3)因为ABAABB,所以p是q的充要条件.(4)由根据同向不等式相加、相乘的性质,有即pq.但比如,当1,5时,而2,所以qp,所以p是q的充分不必要条件.例2解如图(1),闭合开关A或者闭合开关C都可能使灯泡B亮.反之,若要灯泡B亮,不一定非要闭合开关A.因此“闭合开关A”是“灯泡B亮”的充分不必要条件.如图(2),闭合开关A而不闭合开关C,灯泡B不亮.反之,若要灯泡B亮,则开关A必须闭合,说明“闭合开关A”是“灯泡B亮”的必要不充分条件.如图(3),闭合开关A可使灯泡B亮,而灯泡B亮,开关A一定是闭合的,因此“闭合开关A”是“灯泡B亮”的充要条件.如图(4),闭合开关A但不闭合开关C,灯泡B不亮.反之,灯泡B亮也可不必闭合开关A,只要闭合开关C即可,说明“闭合开关A”是“灯泡B亮”的既不充分又不必要条件.跟踪训练2A例3解(1)当a0时,原方程变为2x10,即x,符合要求.(2)当a0时,ax22x10为一元二次方程,它有实根的充要条件是0,即44a0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业设计与制造技术的创新融合
- 工作中的心理疲劳与对策研究
- 工作中的数据分析软件使用指南
- 工业设计的美学与实 用性探讨
- 工作中的法律风险防范与应对
- 工作流程标准化与管理提升
- 工作与生活平衡的企业政策实践
- 工程塑料模架设计与优化
- 工作汇报的逻辑框架
- 工程测量中智能算法的应用研究
- 福建省南平市2023-2024学年八年级下学期期末考试数学试卷(含答案)
- 集控运行岗面试题及答案
- 河道疏浚对渔业发展的影响与对策
- 2024年11月传播学教程试题库(附答案解析)
- 2025年中考数学:初中八年级下册第X单元:代数综合测试试卷
- 白酒酒店合作合同协议书
- T/CIE 209-2024儿童实物编程教育评价指南
- 中国融通农业发展有限集团有限公司招聘笔试题库2025
- 塑料包装制品项目投资计划书
- 2025年入团考试常见问题及试题答案
- 2025浙江杭州市科创集团有限公司招聘10人笔试参考题库附带答案详解
评论
0/150
提交评论