2020高考数学理二轮课标通用专题能力训练:等差数列与等比数列含解析.docx_第1页
2020高考数学理二轮课标通用专题能力训练:等差数列与等比数列含解析.docx_第2页
2020高考数学理二轮课标通用专题能力训练:等差数列与等比数列含解析.docx_第3页
2020高考数学理二轮课标通用专题能力训练:等差数列与等比数列含解析.docx_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教学资料范本2020高考数学理二轮课标通用专题能力训练:等差数列与等比数列含解析编 辑:_时 间:_11等差数列与等比数列专题能力训练第28页一、能力突破训练1.在等差数列an中,a4+a10+a16=30,则a18-2a14的值为()A.20B.-20C.10D.-10答案:D解析:因为a4+a10+a16=30,所以3a10=30,即a10=10,所以a18-2a14=-a10=-10.故选D.2.已知数列an为等比数列,且a8a9a10=-=-1 000,则a10a12=()A.100B.-100C.100D.-100答案:C解析:an为等比数列,a8a9a10=-=-1 000,a9=-10,=1 000.又a10a12=q20,a10a12=|a9a13|=1003.(20xx全国,理5)已知各项均为正数的等比数列an的前4项和为15,且a5=3a3+4a1,则a3=()A.16B.8C.4D.2答案:C解析:设等比数列an的公比为q(q0),则解得所以a3=a1q2=122=4.故选C.4.已知an是等差数列,公差d不为零,前n项和是Sn.若a3,a4,a8成等比数列,则()A.a1d0,dS40B.a1d0,dS40,dS40D.a1d0答案:B解析:设an的首项为a1,公差为d,则a3=a1+2d,a4=a1+3d,a8=a1+7d.a3,a4,a8成等比数列,(a1+3d)2=(a1+2d)(a1+7d),即3a1d+5d2=0.d0,a1d=-d20,且a1=-d.dS4=2d(2a1+3d)=-d20,a80,所以a3a8=16,当且仅当a3=a8=4时取等号.7.中国古代数学专著九章算术中有这样一题:今有男子善走,日增等里,九日走1 260里,第一日、第四日、第七日所走之和为390里,则该男子第三日走的里数为.答案:120解析:男子每天走的里数构成等差数列,设为an,其公差为d,前n项和为Sn.根据题意可知,S9=1 260,a1+a4+a7=390,(方法一)S9=9a5=1 260,a5=140.又a1+a4+a7=3a4=390,a4=130,d=a5-a4=10,a3=a4-d=120.(方法二)由题意,得解得所以a3=a1+2d=120.8.设x,y,z是实数,若9x,12y,15z成等比数列,且成等差数列,则=.答案:解析:由题意知解得xz=y2=y2,x+z=y,从而-2=-2=9.已知Sn为数列an的前n项和,且a2+S2=31,an+1=3an-2n(nN*).(1)求证:an-2n为等比数列;(2)求数列an的前n项和Sn.答案:(1)证明由an+1=3an-2n可得an+1-2n+1=3an-2n-2n+1=3an-32n=3(an-2n).又a2=3a1-2,则S2=a1+a2=4a1-2,得a2+S2=7a1-4=31,得a1=5,则a1-21=30.故an-2n为等比数列.(2)解由(1)可知an-2n=3n-1(a1-2)=3n,an=2n+3n,Sn=2n+1+10.已知等差数列an和等比数列bn满足a2=b3=4,a6=b5=16.(1)求数列an的通项公式;(2)求和:b1+b3+b5+b2n-1.解:(1)设an的公差为d.等差数列an和等比数列bn满足a2=b3=4,a6=b5=16,解得数列an的通项公式an=3n-2.(2)设bn的公比为q.等差数列an和等比数列bn满足a2=b3=4,a6=b5=16,解得b2n-1=b1q2n-2=(q2)n-1=4n-1,b1+b3+b5+b2n-1=11.已知数列an是等比数列.设a2=2,a5=16.(1)若a1+a2+a2n=t(+),nN*,求实数t的值;(2)若在之间插入k个数b1,b2,bk,使得,b1,b2,bk,成等差数列,求k的值.解:设等比数列an的公比为q,由a2=2,a5=16,得q=2,a1=1.(1)a1+a2+a2n=t(+),=t,即=t对nN*都成立,t=3.(2)=1,且,b1,b2,bk,成等差数列,公差d=-,且=(k+1)d,即-1=(k+1),解得k=13.二、思维提升训练12.几名大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110答案:A解析:设数列的首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推,设第n组的项数为n,则前n组的项数和为第n组的和为=2n-1,前n组总共的和为-n=2n+1-2-n.由题意,N100,令100,得n14且nN*,即N出现在第13组之后.若要使最小整数N满足:N100且前N项和为2的整数幂,则SN-应与-2-n互为相反数,即2k-1=2+n(kN*,n14),所以k=log2(n+3),解得n=29,k=5.所以N=+5=440,故选A.13.若数列an为等比数列,且a1=1,q=2,则Tn=+等于()A.1-BC.1-D答案:B解析:因为an=12n-1=2n-1,所以anan+1=2n-12n=22n-1=24n-1,所以所以是等比数列.故Tn=+14.已知等比数列an的首项为,公比为-,其前n项和为Sn.若ASn-B对nN*恒成立,则B-A的最小值为.答案:解析:易得Sn=1-,因为y=Sn-在区间上单调递增(y0),所以yA,B,因此B-A的最小值为15.无穷数列an由k个不同的数组成,Sn为an的前n项和.若对任意nN*,Sn2,3,则k的最大值为.答案:4解析:要满足数列中的条件,涉及最多的项的数列可以为2,1,-1,0,0,0,所以最多由4个不同的数组成.16.已知数列an,bn满足:an+1+1=2an+n,bn-an=n,b1=2.(1)证明数列bn是等比数列,并求数列bn的通项公式;(2)求数列an的前n项和Sn.解:(1)因为bn-an=n,所以bn=an+n.因为an+1=2an+n-1,所以an+1+(n+1)=2(an+n),即bn+1=2bn.又b1=2,所以bn是首项为2,公比为2的等比数列,bn=22n-1=2n.(2)由(1)可得an=bn-n=2n-n,所以Sn=(21+22+23+2n)-(1+2+3+n)=2n+1-2-17.(20xx天津,理19)设an是等差数列,bn是等比数列.已知a1=4,b1=6,b2=2a2-2,b3=2a3+4.(1)求an和bn的通项公式;(2)设数列cn满足c1=1,cn=其中kN*.求数列-1)的通项公式;求aici(nN*).解:(1)设等差数列an的公差为d,等比数列bn的公比为q.依题意得解得故an=4+(n-1)3=3n+1,bn=62n-1=32n.所以,an的通项公式为an=3n+1,bn的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论