高二数学选修21 抛物线及其标准方程 ppt (2).ppt_第1页
高二数学选修21 抛物线及其标准方程 ppt (2).ppt_第2页
高二数学选修21 抛物线及其标准方程 ppt (2).ppt_第3页
高二数学选修21 抛物线及其标准方程 ppt (2).ppt_第4页
高二数学选修21 抛物线及其标准方程 ppt (2).ppt_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2 4 1抛物线及其标准方程 喷泉 复习回顾 我们知道 椭圆 双曲线的有共同的几何特征 都可以看作是 在平面内与一个定点的距离和一条定直线的距离的比是常数e的点的轨迹 2 当e 1时 是双曲线 1 当0 e 1时 是椭圆 其中定点不在定直线上 那么 当e 1时 它又是什么曲线 如图 点是定点 是不经过点的定直线 是上任意一点 过点作 线段fh的垂直平分线m交mh于点m 拖动点h 观察点m的轨迹 你能发现点m满足的几何条件吗 提出问题 几何画板观察 问题探究 当e 1时 即 mf mh 点m的轨迹是什么 探究 可以发现 点m随着h运动的过程中 始终有 mf mh 即点m与点f和定直线l的距离相等 点m生成的轨迹是曲线c的形状 如图 我们把这样的一条曲线叫做抛物线 在平面内 与一个定点f和一条定直线l l不经过点f 的距离相等的点的轨迹叫抛物线 点f叫抛物线的焦点 直线l叫抛物线的准线 mf d d为m到l的距离 准线 焦点 d 一 抛物线的定义 解法一 以为轴 过点垂直于的直线为轴建立直角坐标系 如下图所示 则定点设动点点 由抛物线定义得 化简得 二 标准方程的推导 解法二 以定点为原点 过点垂直于的直线为轴建立直角坐标系 如下图所示 则定点 的方程为 设动点 由抛物线定义得 化简得 二 标准方程的推导 l 解法三 以过f且垂直于l的直线为x轴 垂足为k 以f k的中点o为坐标原点建立直角坐标系xoy 两边平方 整理得 m x y f 二 标准方程的推导 依题意得 这就是所求的轨迹方程 三 标准方程 把方程y2 2px p 0 叫做抛物线的标准方程 其中p为正常数 表示焦点在x轴正半轴上 且p的几何意义是 焦点坐标是 准线方程为 想一想 坐标系的建立还有没有其它方案也会使抛物线方程的形式简单 方案 1 方案 2 方案 3 方案 4 焦点到准线的距离 y2 2px p 0 x2 2py p 0 y2 2px p 0 x2 2py p 0 p的意义 抛物线的焦点到准线的距离 方程的特点 1 左边是二次式 2 右边是一次式 决定了焦点的位置 四 四种抛物线的对比 p66思考 二次函数的图像为什么是抛物线 当a 0时与当a 0时 结论都为 例1 1 已知抛物线的标准方程是y2 6x 求它的焦点坐标及准线方程 2 已知抛物线的焦点坐标是f 0 2 求抛物线的标准方程 3 已知抛物线的准线方程为x 1 求抛物线的标准方程 4 求过点a 3 2 的抛物线的标准方程 x2 8y y2 4x 看图 看图 看图 课堂练习 1 根据下列条件 写出抛物线的标准方程 1 焦点是f 3 0 2 准线方程是x 3 焦点到准线的距离是2 y2 12x y2 x y2 4x y2 4x x2 4y或x2 4y 2 求下列抛物线的焦点坐标和准线方程 1 y2 20 x 2 x2 y 3 2y2 5x 0 4 x2 8y 0 5 0 x 5 0 2 y 2 例2 一种卫星接收天线的轴截面如下图所示 卫星波束呈近似平行状态射入轴截面为抛物线的接收天线 经反射聚集到焦点处 已知接收天线的径口 直径 为4 8m 深度为0 5m 建立适当的坐标系 求抛物线的标准方程和焦点坐标 解 如上图 在接收天线的轴截面所在平面内建立直角坐标系 使接收天线的顶点 即抛物线的顶点 与原点重合 即 所以 所求抛物线的标准方程是 焦点的坐标是 4 标准方程中p前面的正负号决定抛物线的开口方向 1 抛物线的定义 2 抛物线的标准方程有四种不同的形式 每一对焦点和准线对应一种形式 3 p的几何意义是 焦点到准线的距离 2000 全国 过抛物线的焦点作一条直线交抛物线于 两点 若线段与的长分别为 则等于 a b c d 分析 抛物线的标准方程为 其焦点为 取特殊情况 即直线平行与轴 则 如图 故 返回 解 2 因为焦点在y轴的负半轴上 并且 2 p 4 所以所求抛物线的标准方程是x2 8y 返回 解 3 因为准线方程是x 1 所以p 2 且焦点在x轴的负半轴上 所以所求抛物线的标准方程是y2 4x 返回 x y o 3 2 解 4 因为 3 2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论