高二数学立体几何课件球的体积和表面积.ppt_第1页
高二数学立体几何课件球的体积和表面积.ppt_第2页
高二数学立体几何课件球的体积和表面积.ppt_第3页
高二数学立体几何课件球的体积和表面积.ppt_第4页
高二数学立体几何课件球的体积和表面积.ppt_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

直线与平面垂直 朔州市平鲁区李林中学 周玉琴 李林中学 球的体积和表面积 9 11球的体积和表面积 例题讲解 课堂作业 教学目标 重点难点 球表面积 球的体积 课堂练习 封底 退出 书山有路勤为径 学海无崖苦作舟 少小不学习 老来徒伤悲 成功 艰苦的劳动 正确的方法 少谈空话 天才就是百分之一的灵感 百分之九十九的汗水 勤奋 守纪 自强 自律 课堂小结 掌握球的体积 表面积公式 掌握球的表面积公式 体积公式的推导过程及主要思想进一步理解分割 近似求和 精确求和的思想方法 会用球的表面积公式 体积公式解快相关问题 培养学生应用数学的能力 能解决球的截面有关计算问题及球的 内接 与 外切 的几何体问题 教学目标 球的体积公式的推导 球的体积公式及应用 球的表面积公式及应用 球的表面积公式的推导 教学重点 教学难点 重点难点 高等于底面半径的旋转体体积对比 球的体积 学习球的知识要注意和圆的有关指示结合起来 所以我们先来回忆圆面积计算公式的导出方法 球的体积 我们把一个半径为r的圆分成若干等分 然后如上图重新拼接起来 把一个圆近似的看成是边长分别是 当所分份数不断增加时 精确程度就越来越高 当份数无穷大时 就得到了圆的面积公式 即先把半球分割成n部分 再求出每一部分的近似体积 并将这些近似值相加 得出半球的近似体积 最后考虑n变为无穷大的情形 由半球的近似体积推出准确体积 球的体积 分割 求近似和 化为准确和 问题 已知球的半径为r 用r表示球的体积 o r o a 球的体积 2 若每小块表面看作一个平面 将每小块平面作为底面 球心作为顶点便得到n个棱锥 这些棱锥体积之和近似为球的体积 当n越大 越接近于球的体积 当n趋近于无穷大时就精确到等于球的体积 1 球的表面是曲面 不是平面 但如果将表面平均分割成n个小块 每小块表面可近似看作一个平面 这n小块平面面积之和可近似看作球的表面积 当n趋近于无穷大时 这n小块平面面积之和接近于甚至等于球的表面积 球面不能展开成平面图形 所以求球的表面积无法用展开图求出 如何求球的表面积公式呢 回忆球的体积公式的推导方法 是否也可借助于这种极限思想方法来推导球的表面积公式呢 下面 我们再次运用这种方法来推导球的表面积公式 球的表面积 球的表面积 第一步 分割 球面被分割成n个网格 表面积分别为 则球的表面积 则球的体积为 球的表面积 第二步 求近似和 由第一步得 球的表面积 第三步 化为准确和 如果网格分的越细 则 小锥体 就越接近小棱锥 球的表面积 例1 钢球直径是5cm 求它的体积 变式1 一种空心钢球的质量是142g 外径是5cm 求它的内径 钢的密度是7 9g cm2 例题讲解 变式1 一种空心钢球的质量是142g 外径是5cm 求它的内径 钢的密度是7 9g cm2 解 设空心钢球的内径为2xcm 则钢球的质量是 答 空心钢球的内径约为4 5cm 由计算器算得 例题讲解 变式2 把钢球放入一个正方体的有盖纸盒中 至少要用多少纸 用料最省时 球与正方体有什么位置关系 球内切于正方体 侧棱长为5cm 例题讲解 例2 如图 正方体abcd a1b1c1d1的棱长为a 它的各个顶点都在球o的球面上 问球o的表面积 分析 正方体内接于球 则由球和正方体都是中心对称图形可知 它们中心重合 则正方体对角线与球的直径相等 例题讲解 例 已知过球面上三点a b c的截面到球心o的距离等于球半径的一半 且ab bc ca cm 求球的体积 表面积 解 如图 设球o半径为r 截面 o 的半径为r 例 已知过球面上三点a b c的截面到球心o的距离等于球半径的一半 且ab bc ca cm 求球的体积 表面积 2 一个正方体的顶点都在球面上 它的棱长是4cm 这个球的体积为 cm3 8 3 有三个球 一球切于正方体的各面 一球切于正方体的各侧棱 一球过正方体的各顶点 求这三个球的体积之比 1 球的直径伸长为原来的2倍 体积变为原来的 倍 练习一 课堂练习 4 若两球体积之比是1 2 则其表面积之比是 练习二 1 若球的表面积变为原来的2倍 则半径变为原来的 倍 2 若球半径变为原来的2倍 则表面积变为原来的 倍 3 若两球表面积之比为1 2 则其体积之比是 7 将半径为1和2的两个铅球 熔成一个大铅球 那么这个大铅球的表面积是 5 长方体的共顶点的三个侧面积分别为 则它的外接球的表面积为 6 若两球表面积之差为48 它们大圆周长之和为12 则两球的直径之差为 练习二 了解球的体积 表面积推导的基本思路 分割 求近似和 化为标准和的方法 是一种重要的数学思想方法 极限思

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论