




已阅读5页,还剩47页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高一数学学科导学练 编号: 时间:2.1.1 指数与指数幂的运算(1)编写人:马发展 审核人:王晓华 学习目标 1. 了解指数函数模型背景及实用性、必要性;2. 了解根式的概念及表示方法;3. 理解根式的运算性质. 学习过程 一、课前准备复习1:正方形面积公式为 ;正方体的体积公式为 .复习2:(初中根式的概念)如果一个数的平方等于a,那么这个数叫做a的 ,记作 ; 如果一个数的立方等于a,那么这个数叫做a的 ,记作 . 二、新课导学1.一般地,若,那么叫做 ,其中,.2.当n为奇数时, 正数的n次方根是一个 ,负数的n次方根是一个 ,这时,的n次方根用符号 表示.3.当n为偶数时,正数的n次方根有 个,这 个数 .这时,正数的正的n次方根用符号 表示,负的n次方根用符号 表示,正的n次方根与负的n次方根可以合并成 4.负数没有偶次方根;0的任何次方根都是0,即 .5.的式子就叫做 ,这里n叫做 ,a叫做 .6. . 7.当是奇数时, ;当是偶数时, .8.规定分数指数幂如下 ; 9. 0的正分数指数幂 ;0的负分数指数幂 .10.指数幂的运算性质: () ; ; 典型例题例1求下类各式的值: (1) ; (2) ; (3); (4) ().变式:计算或化简下列各式.(1); (2).推广: (a0).例2 求值:; ;例3 用分数指数幂的形式表示下列各式:(1); (2); (3).例4 计算(式中字母均正):(1); (2).例5 计算:(1) ;(2) ;(3).小结:在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则.三、总结提升 学习小结1. n次方根,根式的概念;2. 根式运算性质. 当堂检测1. 的值是( ).A. 3 B. 3 C. 3 D. 812. 化简是( ). A. B. C. D. 3. 若,且为整数,则下列各式中正确的是( ).A. B. C. D. 4. 化简= .5. 若,则= . 课后作业 课本59页第1、2、4(1)(3)(5)(7)2.1.1 指数与指数幂的运算(2)编写人:李利峰 审核人:牛红丽 学习目标 1. 理解分数指数幂的概念;2. 掌握根式与分数指数幂的互化;3. 掌握有理数指数幂的运算. 学习过程 一、课前准备复习1:一般地,若,则叫做的 ,其中,. 简记为: .像的式子就叫做 ,具有如下运算性质:= ;= ;= .复习2:整数指数幂的运算性质.(1) ;(2) ;(3) .二、新课导学 学习探究探究任务:分数指数幂引例:a0时,则类似可得 ; ,类似可得 .新知:规定分数指数幂如下;.试试:(1)将下列根式写成分数指数幂形式:= ; = ; = .(2)求值:; ; ; .反思: 0的正分数指数幂为 ;0的负分数指数幂为 . 分数指数幂有什么运算性质?小结:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂指数幂的运算性质: (); ; 典型例题例1 求值:; ;.变式:化为根式.例2 用分数指数幂的形式表示下列各式:(1); (2); (3).例3 计算(式中字母均正):(1); (2).小结:例2,运算性质的运用;例3,单项式运算.例4 计算:(1) ;(2) ;(3).小结:在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则.反思: 的结果?结论:无理指数幂.(结合教材P53利用逼近的思想理解无理指数幂意义) 无理数指数幂是一个确定的实数实数指数幂的运算性质如何? 动手试试练1. 把化成分数指数幂.练2. 计算:(1); (2).三、总结提升 学习小结分数指数幂的意义;分数指数幂与根式的互化;有理指数幂的运算性质. 知识拓展放射性元素衰变的数学模型为:,其中t表示经过的时间,表示初始质量,衰减后的质量为m,为正的常数. 学习评价 当堂检测1. 若,且为整数,则下列各式中正确的是( ).A. B. C. D. 2. 化简的结果是( ). A. 5 B. 15 C. 25 D. 1253. 计算的结果是( ).A B D2.1.1 指数与指数幂的运算(练习)编写人:王晓华 审核人:马银珠 学习目标 1. 掌握n次方根的求解;2. 会用分数指数幂表示根式;3. 掌握根式与分数指数幂的运算. 学习过程 一、课前准备复习1:什么叫做根式? 运算性质?像的式子就叫做 ,具有性质:= ;= ;= .复习2:分数指数幂如何定义?运算性质? ; .其中 ; ; .复习3:填空. n为 时,. 求下列各式的值: = ; = ;= ;= ; = ; = ;= .二、新课导学 典型例题例1 已知=3,求下列各式的值:(1);(2);(3)补充:立方和差公式.小结: 平方法; 乘法公式; 根式的基本性质(a0)等.注意, a0十分重要,无此条件则公式不成立. 例如,.变式:已知,求:(1); (2).例2从盛满1升纯酒精的容器中倒出升,然后用水填满,再倒出升,又用水填满,这样进行5次,则容器中剩下的纯酒精的升数为多少?变式:n次后?小结: 方法:摘要审题;探究 结论; 解应用问题四步曲:审题建模解答作答. 动手试试练1. 化简:.练2. 已知x+x-1=3,求下列各式的值.(1); (2).练3. 已知,试求的值.三、总结提升 学习小结1. 根式与分数指数幂的运算;2. 乘法公式的运用. 知识拓展1. 立方和差公式:;.2. 完全立方公式:;. 学习评价 当堂检测1. 的值为( ). A. B. C. 3 D. 7292. (a0)的值是( ).A. 1 B. a C. D. 3. 下列各式中成立的是( ).A BC D 4. 化简= .5. 化简= . 课后作业 1. 已知, 求的值.2. 探究:时, 实数和整数所应满足的条件.2.1.2 指数函数及其性质(1)编写人:马发展 审核人:李利峰 学习目标 1. 了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;2. 理解指数函数的概念和意义;3. 能画出具体指数函数的图象,掌握指数函数的性质(单调性、特殊点). 学习过程 一、课前准备复习1:零指数、负指数、分数指数幂怎样定义的?(1) ;(2) ;(3) ; .其中复习2:有理指数幂的运算性质.(1) ;(2) ;(3) .二、新课导学 学习探究探究任务一:指数函数模型思想及指数函数概念实例: A细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x次分裂得到y个细胞,那么细胞个数y与次数x的函数关系式是什么?B一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84,那么以时间x年为自变量,残留量y的函数关系式是什么?讨论:上面的两个函数有什么共同特征?底数是什么?指数是什么?新知:一般地,函数叫做指数函数(exponential function),其中x是自变量,函数的定义域为R.反思:为什么规定0且1呢?否则会出现什么情况呢?探究任务二:指数函数的图象和性质回顾:研究方法:画出函数图象,结合图象研究函数性质研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性作图:在同一坐标系中画出下列函数图象: , 讨论:(1)函数与的图象有什么关系?如何由的图象画出的图象?新知:根据图象归纳指数函数的性质.a10a0,a1)的图象恒过定点( ).A. B. C. D. 3. 指数函数,满足不等式 ,则它们的图象是( ). 4. 比较大小: .5. 函数的定义域为 . 课后作业 1. 求函数y=的定义域.2. 探究:在m,n上,值域?2.1.2 指数函数及其性质(2)编写人: 李利峰 审核人:牛红丽 学习目标 1. 熟练掌握指数函数概念、图象、性质;2. 掌握指数型函数的定义域、值域,会判断其单调性;3. 培养数学应用意识. 学习过程 一、课前准备复习1:指数函数的形式是 ,其图象与性质如下a10a0,a1)的图象与函数y=bx (b0,b1)的图象关于y轴对称,则有( ).A. ab B. a1)在R上递减C. 若aa,则a1D. 若1,则4. 比较下列各组数的大小: ; .5. 在同一坐标系下,函数y=ax, y=bx, y=cx, y=dx的图象如右图,则a、b、c、d、1之间从小到大的顺序是 . 课后作业 1. 已知函数f(x)=a(aR),求证:对任何, f(x)为增函数.2. 求函数的定义域和值域,并讨论函数的单调性、奇偶性.2.2.1 对数与对数运算(1)编写人:牛红丽 审核人:王晓华 学习目标 1. 理解对数的概念;2. 能够说明对数与指数的关系;3. 掌握对数式与指数式的相互转化. 学习过程 一、课前准备复习1:庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺? 复习2:假设2002年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产 是2002年的2倍? (只列式)二、新课导学新知:一般地,如果,那么数 x叫做以a为底 N的对数(logarithm).记作 ,其中a叫做对数的底数,N叫做真数 新知:我们通常将以10为底的对数叫做常用对数(common logarithm),并把常用对数简记为lgN 在科学技术中常使用以无理数e=2.71828为底的对数,以e为底的对数叫自然对数,并把自然对数简记作lnN 试试:分别说说lg5 、lg3.5、ln10、ln3的意义.反思:(1)指数与对数间的关系? 时, .(2)负数与零是否有对数?为什么? (3) , . 典型例题例1下列指数式化为对数式,对数式化为指数式.(1) ;(2);(3);(4) ; (5);(6)lg0.001=; (7)ln100=4.606.变式: lg0.001=?小结:注意对数符号的书写,与真数才能构成整体.例2求下列各式中x的值:(1); (2); (3); (4).小结:应用指对互化求x. 动手试试练1. 求下列各式的值. (1) ; (2) ; (3)10000.练2. 探究 三、总结提升 学习小结对数概念;lgN与lnN;指对互化;如何求对数值 知识拓展对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家纳皮尔(Napier,1550-1617年)男爵. 在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科. 可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间. 纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数. 学习评价 当堂检测(时量:5分钟 满分:10分)计分:1. 若,则( ). A. 4 B. 6 C. 8 D. 92. = ( ).A. 1 B. 1 C. 2 D. 23. 对数式中,实数a的取值范围是( ).A B(2,5) C D 4. 计算: .5. 若,则x=_,若,则y=_ 课后作业 1. 将下列指数式化成对数式,对数式化成指数式.(1); (2); (3)(4); (5);(6);(7).2. 计算: (1); (2); (3); (4); 2.2.1 对数与对数运算(2)编写人:王晓华 审核人:马发展 学习目标 1. 掌握对数的运算性质,并能理解推导这些法则的依据和过程;2. 能较熟练地运用对数运算法则解决问题. 学习过程 一、课前准备复习1:(1)对数定义:如果,那么数 x叫做 ,记作 .(2)指数式与对数式的互化: .复习2:幂的运算性质.(1) ;(2) ;(3) .复习3:根据对数的定义及对数与指数的关系解答:(1)设,求;(2)设,试利用、表示二、新课导学 学习探究探究任务:对数运算性质及推导问题:由,如何探讨和、之间的关系?设, ,由对数的定义可得:M=,N= MN=,MN=p+q,即得MN=M + N根据上面的证明,能否得出以下式子?如果 a 0,a 1,M 0, N 0 ,则(1);(2);(3) .反思:自然语言如何叙述三条性质? 性质的证明思路?(运用转化思想,先通过假设,将对数式化成指数式,并利用幂运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式) 典型例题例1用, , 表示下列各式:(1); (2) .例2计算:(1); (2);(3); (4)lg.探究:根据对数的定义推导换底公式(,且;,且;) 动手试试练1. 设,,试用、表示.变式:已知 3 = a, 7 = b,用 a,b 表示56.练2. 计算:(1);(2).三、总结提升 学习小结对数运算性质及推导;运用对数运算性质;换底公式. 知识拓展 对数的换底公式; 对数的倒数公式. 对数恒等式:,. 当堂检测1. 下列等式成立的是( )A BC D2. (a0)化简得结果是().AaBa2CaDa3. 若,那么( ).A BC D4. 已知,且,则m = .5. 计算: . 课后作业 1. 计算:(1);(2).2. 设、为正数,且,求证:.2.2.1 对数与对数运算(3)编写人:马银珠 审核人:马发展 学习目标 1. 能较熟练地运用对数运算性质解决实践问题;2. 加强数学应用意识的训练,提高解决应用问题的能力. 学习过程 一、课前准备复习1:对数的运算性质及换底公式.如果 a 0,a 1,M 0, N 0 ,则(1) ;(2) ;(3) .换底公式 .复习2:已知 3 = a, 7 = b,用 a,b 表示56.复习3:1995年我国人口总数是12亿,如果人口的年自然增长率控制在1.25,问哪一年我国人口总数将超过14亿? (用式子表示)二、新课导学 典型例题例1 20世纪30年代,查尔斯.里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大. 这就是我们常说的里氏震级M,其计算公式为:,其中A是被测地震的最大振幅,是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001, 计算这次地震的震级(精确到0.1);(2)5级地震给人的振感已比较明显,计算7.6级地震最大振幅是5级地震最大振幅的多少倍?(精确到1)小结:读题摘要寻找数量关系利用对数计算.例2当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”根据些规律,人们获得了生物体碳14含量P与生物死亡年数t之间的关系回答下列问题:(1)求生物死亡t年后它机体内的碳14的含量P,并用函数的观点来解释P和t之间的关系,指出是我们所学过的何种函数?(2)已知一生物体内碳14的残留量为P,试求该生物死亡的年数t,并用函数的观点来解释P和t之间的关系,指出是我们所学过的何种函数?(3)长沙马王墓女尸出土时碳14的余含量约占原始量的76.7%,试推算古墓的年代?反思: P和t之间的对应关系是一一对应; P关于t的指数函数,则t关于P的函数为 . 动手试试练1. 计算:(1); (2).练2. 我国的GDP年平均增长率保持为7.3%,约多少年后我国的GDP在2007年的基础上翻两番?三、总结提升 学习小结1. 应用建模思想(审题设未知数建立x与y之间的关系求解验证); 2. 用数学结果解释现象. 知识拓展在给定区间内,若函数的图象向上凸出,则函数在该区间上为凸函数,结合图象易得到;在给定区间内,若函数的图象向下凹进,则函数在该区间上为凹函数,结合图象易得到. 学习评价 当堂检测1. (a0)化简得结果是().AaBa2CaDa2. 若 log7log3(log2x)0,则=(). A. 3 B. C. D. 3. 已知,且,则m 之值为( ).A15 B C D2254. 若3a2,则log382log36用a表示为 .5. 已知,则 ; 2.2.2 对数函数及其性质(1)编写人:李利峰 审核人:王晓华 学习目标 1. 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2. 能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3. 通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法. 学习过程 一、课前准备复习1:指数函数的图像及性质. a10a10a1时,在同一坐标系中,函数与的图象是( ).2. 函数的值域为( ).A. B. C. D. 3. 不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中级银行从业资格之中级银行业法律法规与综合能力强化训练模考卷【基础题】附答案详解
- 自考专业(教育管理)检测卷及答案详解(考点梳理)
- 中医助理医师考前冲刺练习附参考答案详解(轻巧夺冠)
- 自考专业(建筑工程)每日一练试卷及答案详解参考
- 中级银行从业资格之中级银行业法律法规与综合能力综合提升练习试题附参考答案详解(a卷)
- 专升本真题附参考答案详解(突破训练)
- 中级银行从业资格之中级银行业法律法规与综合能力通关试卷提供答案解析【综合题】附答案详解
- AI + 教育:助力新时代教育强国建设智库报告
- 电竞公司保险柜管理细则
- 环保公司涉外风险评估规定
- 马兰士CD6004 使用说明书
- 2023年泰州市高级教师职称考试试题
- 业余足球比赛技术统计表
- 社情民意写作基本知识要点课件
- 医疗器械生产企业GMP培训专家讲座
- 2023年中远海运船员管理有限公司招聘笔试题库及答案解析
- 辐射及其安全防护(共38张PPT)
- 金风15兆瓦机组变流部分培训课件
- 膀胱镜检查记录
- 沈阳终止解除劳动合同证明书(三联)
- 化工装置静设备基本知识
评论
0/150
提交评论