




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3平面向量的基本定理及坐标表示教学设计【教学目标】1了解平面向量基本定理;2理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;3能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 【导入新课】复习引入:1 实数与向量的积实数与向量的积是一个向量,记作:.(1)|=|;(2)0时,与方向相同;0时,与方向相反;=0时,=.2运算定律结合律:()=() ;分配律:(+)=+, (+)=+. 3. 向量共线定理 向量与非零向量共线的充要条件是:有且只有一个非零实数,使=.新授课阶段一、平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数1,2使=1+2.探究:(1) 我们把不共线向量、叫做表示这一平面内所有向量的一组基底;(2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a在给出基底、的条件下进行分解;(4)基底给定时,分解形式惟一. 1,2是被,唯一确定的数量.二、平面向量的坐标表示如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得1我们把叫做向量的(直角)坐标,记作2其中叫做在轴上的坐标,叫做在轴上的坐标,2式叫做向量的坐标表示.与相等的向量的坐标也为.特别地,.如图,在直角坐标平面内,以原点O为起点作,则点的位置由唯一确定.设,则向量的坐标就是点的坐标;反过来,点的坐标也就是向量的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.三、平面向量的坐标运算(1)若,则,.两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为、,则,即,同理可得.(2)若,则.一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.=-=( x2,y2) -(x1,y1)= (x2- x1,y2- y1).(3)若和实数,则.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为、,则,即.例1 已知A(x1,y1),B(x2,y2),求的坐标.例2 已知=(2,1),=(-3,4),求+,-,3+4的坐标.例3 已知平面上三点的坐标分别为A(-2,1),B(-1,3), C(3,4),求点D的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD时,由,得D1=(2,2).当平行四边形为ACDB时,得D2=(4,6),当平行四边形为DACB时,得D3=(-6,0).例4 已知三个力(3,4), (2,-5),(x,y)的合力+=,求的坐标.解:由题设+=,得:(3,4)+ (2,-5)+(x,y)=(0,0),即: (-5,1).例5 已知=(2,1), =(3,4),求,34的坐标.解:(2,1)+(-3,4)=(1,5),(2,1)-(-3,4)=(5,3),343(2,1)+4(-3,4)=(6,3)+(-12,16)=(6,19). 点评:利用平面向量的坐标运算法则直接求解.例6 已知平行四边形ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)(3,4),求顶点D的坐标.解:设点D的坐标为(x,y), 即 3- x=1,4-y=2.解得x=2,y=2.所以顶点D的坐标为(2,2).另解:由平行四边形法则可得例7 经过点的直线分别交轴、轴于点,且,求点的坐标.解:由题设知,三点共线,且,设,点在之间,则有, .解之得:, 点的坐标分别为.点不在之间,则有,同理,可求得点的坐标分别为,.综上,点的坐标分别为或,.例8. 已知三点,若,试求实数的取值范围,使落在第四象限.解:设点,由题设得, 要使落在第四象限,则,解之得.例8 已知向量,问是否存在实数同时满足两个条件:?如果存在,求出的值;如果不存在,请说明理由.解:假设满足条件的实数存在,则有解之得:满足条件的实数.课堂小结(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;(3)会根据向量的坐标,判断向量是否共线. 作业见同步练习拓展提升1.设是同一平面内两个不共线的向量,不能以下各组向量中作为基底的是( )A. , B. +, C. ,2 D.,+2. 设是同一平面内所有向量的一组基底,则以下各组向量中,不能作为基底的是( )A. +和- B. 3-2和4-6C. +2和2+ D. +和3. 已知不共线, =+,=4 +2,并且,共线,则下列各式正确的是( )A. =1, B. =2, C. =3, D. =44.设=+5,=-2+8,=3-3,那么下列各组的点中三点一定共线的是( )A. A,B,C B.A,C,D C.A,B,D D.,下列说法中,正确的是()一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底;一个平面内有无数多对不共线的向量可作为表示该平面内所有向量的基底;零向量不可作为基底中的向量.已知是同一平面内两个不共线的向量,那么下列两个结论中正确的是()+(,为实数)可以表示该平面内所有向量;若有实数,使+,则.以上都不对已知的边上的中线,若,则()( )( )( )( )已知是正六边形,则()( )( )( )如果+,+,其中,为已知向量,则,.已知是同一平面内两个不共线的向量,且+,+,如果,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中医药公卫服务老年人健康管理考核试题(附答案)
- 阿尔山市2024-2025学年八年级上学期语文期中模拟试卷
- 安徽省淮北市烈山区2023-2024学年高一下学期期末考试语文试题及答案
- 安徽省安庆市迎江区2024-2025学年高一上学期期中考试历史考点及答案
- 2025 年小升初武汉市初一新生分班考试语文试卷(带答案解析)-(人教版)
- 2025 年小升初杭州市初一新生分班考试英语试卷(带答案解析)-(人教版)
- 福建省莆田市莆田第十五中学2025-2026学年高一上第一次月考历史试卷
- 球馆兼职合同范本
- 电子类购销合同范本
- 码头固定吊车合同范本
- 上海市闵行区2024-2025学年下学期期末考试六年级数学试卷及答案(新教材沪教版)
- 华为廉洁培训课件
- 支原体感染详细讲解
- 山东省青岛市城阳区2024-2025学年下学期期中考试七年级数学试题(含部分答案)
- 失眠的预防与中医护理
- 2025-2030年中国再生建筑骨料行业市场现状供需分析及投资评估规划分析研究报告
- 2025年+贵州省中考英语核心高频690词+++
- 2025届中考物理全真模拟卷【云南专用】(含解析)
- 大型医院食堂管理制度
- DB62T 4248-2020 青海云杉育苗技术规程
- T/YNIA 003.1-2021面膜护肤用非织造布第1部分:水刺法
评论
0/150
提交评论