二次函数y=ax2+c的图像和性质.doc_第1页
二次函数y=ax2+c的图像和性质.doc_第2页
二次函数y=ax2+c的图像和性质.doc_第3页
二次函数y=ax2+c的图像和性质.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2课时 函数y=ax2+c的图象与性质【知识与技能】1.使学生能利用描点法正确作出函数y=x2+2与y=x2-2的图象.2.理解二次函数y=ax2+c的性质及它与函数y=ax2的关系.【过程与方法】让学生经历二次函数y=ax2+c性质探究及性质应用的过程.【情感态度】培养学生动手操作的能力及归纳总结与灵活应用知识的能力.【教学重点】理解二次函数y=ax2+c的性质及它与函数y=ax2 的关系 【教学难点】理解二次函数y=ax2+c的性质及它与函数y=ax2的关系一、情景导入,初步认知1.二次函数y=x2的图象是 ,它的开口向 ,顶点坐标是 ;对称轴是 ,在对称轴的左侧y随x的增大而 ,在对称轴的右侧y随工的增大而 ,函数y=x2在x= 时,取最值, 其最 值是 .2.二次函数y=x2十2的图象与二次函数y=x2的图象开口方向、对称轴和顶点坐标是否相同?二、思考探究,获取新知问题1 对于前面提出的第2个问题,你将采取什么方法加以研究?问题2 你能在同一直角坐标系中,画出函数y=x2与y=x2+2的图象吗?【归纳结论】函数y=x2+2的图象上的点都是由函数y=x2的图象上的相应点向上移动了两个单位.完成下表:三、运用新知,深化理解1.(1)函数y=4x2+5的图象可由y=4x2的图象向 平移 单位得到;(2)y=4x2-11的图象向 平移 个单位得到.2. 将函数y=-3x2+4的图象向 平移 个单位可得y=-3x2的图象;将y=2x2-7的图象向 平移 个单位得到可y=2x2的图象;将y=x2-7的图象向 平移 个单位可得到y=x2+2的图象.3.拋物线y=-3x2+5的开口向 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,y随x的增大而 ,在对称轴的右侧y随x的增大而 ,当x= 时,取得最 值,这个值等于 .4. 拋物线y=7x2-3的开口向 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧y随x的增大而 ,在对称轴的右侧,y随x的增大而 ,当x = 时,取得最 值,这个值等于 .5. 拋物线y =ax2+c与y=3x2的形状相同,且其顶点坐标是(0,1),则其表达式为 .解:1.(1)上 5 (2)下 112.下 4 上 7 上 93.下 y轴 (0,5) 增大 减小 0 大 54.上 y轴 (0,-3) 减小 增大 0 小 -35.y=3x2+1四.师生互动,课堂小结本节课你有何收获?本节课你有何疑问1.布置作业:教材“习题2.3”中第1、2题.2.完成练习册中本课时的练习.函数的教学,尤其是二次函数是学生普遍感觉较为抽象难懂的知识.在教学过程中,除了让学生多动手画图象,加深学生对函数图象的了解,加深他们对函数性质的了解外,更重要的是让学生参与到函数图象和性质的探索中去.要利用一切可以利用的材料来帮助学生理解所学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论