统计学之时间数列变动因素分析(ppt 74页).ppt_第1页
统计学之时间数列变动因素分析(ppt 74页).ppt_第2页
统计学之时间数列变动因素分析(ppt 74页).ppt_第3页
统计学之时间数列变动因素分析(ppt 74页).ppt_第4页
统计学之时间数列变动因素分析(ppt 74页).ppt_第5页
已阅读5页,还剩68页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2020 3 5 扬州大学管理学院 1 本资料来源 2020 3 5 扬州大学管理学院 2 第四节时间数列变动因素分析 一 时间数列变动的影响因素分解时间数列中各项发展水平的发展变化 是由许多复杂因素共同作用的结果 各种因素的性质不同 其作用也不同 为了观察和分析时间数列发展变动的规律 通常假定 影响时间数列变动的因素大体有四种 长期趋势 季节变动 循环变动和不规则变动 2020 3 5 扬州大学管理学院 3 长期趋势 季节变动 循环变动及不规则变动的概念 第四节时间数列变动因素分析 2020 3 5 扬州大学管理学院 4 循环变动C Cyclical 不规则变动I Irregular 季节变动S Seasonal 2020 3 5 扬州大学管理学院 5 第四节时间数列变动因素分析 长期趋势长期趋势是指现象在一段较长的时间内 由于普遍的 持续的 决定性的基本因素的作用 使发展水平沿着一个方向 逐渐向上或向下变动的趋势 认识和掌握事物的长期趋势 可以把握事物发展变化的基本特点 2020 3 5 扬州大学管理学院 6 第四节时间数列变动因素分析 季节变动季节变动是指现象受季节的影响而发生的变动 即现象在一年内或更短的时间内随着时序的更换 呈现周期重复的变化 季节变动的原因 既有自然因素又有社会因素 2020 3 5 扬州大学管理学院 7 第四节时间数列变动因素分析 循环变动循环变动 或称周期性变动 是指现象发生的周期比较长的 近乎规律性的周而复始的涨落起伏变动 它不是朝同一方向持续发展 且周期长度不等 波动程度也不同 它是由多种原因引起的 多指经济发展兴衰相替的变动 2020 3 5 扬州大学管理学院 8 第四节时间数列变动因素分析 4 不规则变动不规则变动是指除了上述各种变动以外 现象因临时的 偶然的因素而引起的随机变动 这种变动无规则可循 例如地震 水灾 旱灾等所引起的变动 从长期来看有些偶然因素的个别影响可以相互抵消一部分 2020 3 5 扬州大学管理学院 9 第四节时间数列变动因素分析 上述四种因素的变动 可用加法模式或乘法模式来描述时间数列的实际变动 加法模式 四种因素相互独立时 时间数列Y是各因素相加的总和 即 Y T S C I乘法模式 四种因素相互影响或交叉作用时 时间数列Y是各因素相乘的积 即Y T S C I 2020 3 5 扬州大学管理学院 10 第四节时间数列变动因素分析 式中 Y T是总量指标 用原始单位表示 S C I则为比率 用百分数表示 T S一般称为常态变动 C I称为剩余变动 变动分析的任务就是将各因素对时间数列变动的影响测定出来 研究它们的规律为预测未来及进行决策提供依据 实际应用中多采用乘法模式 以下的测定方法以乘法模式为基础 2020 3 5 扬州大学管理学院 11 二 长期趋势测定就是对数列的变动情况和特点进行理论分析 并采用相应的方法对数列进行修匀 消除其他因素的影响 揭示现象发展变化的趋势 把握其规律 年份 资料 2020 3 5 扬州大学管理学院 12 2020 3 5 扬州大学管理学院 13 1 时距扩大法 时距扩大法的基本思想是通过对原有数列中各期指标值按较长的时距加以归并 形成新的时间数列 以消除偶然因素和季节变动的影响 显示出长期趋势 计算表 1999 2002年某地工业增加值 要消除I S的影响 应选择多大的时距 2020 3 5 扬州大学管理学院 15 2020 3 5 扬州大学管理学院 16 1 时期数列指标值可以直接加或求其序时平均数2 时点数列则需计算其序时平均数 1 时距大小的选择依据数列的特点2 信息量损失较大3 不易进行外推预测 特点 注意 2020 3 5 扬州大学管理学院 17 移动平均法的基本思想是对原数列中的指标值按一定时间跨度移动 计算出一系列新的序时平均数 形成时间数列 以消除偶然因素和季节变动的影响 从而显示出长期趋势 2 移动平均法 2020 3 5 扬州大学管理学院 18 1 简单移动平均法 它是直接用简单算术平均数作为移动平均趋势值的一种方法 设移动间隔为K 则移动平均数列可写为 式中 为移动平均趋势值 K为大于1小于n的正整数 工业增加值移动平均结果 1500 1 1583 0 1571 0 1532 8 1574 8 1553 6 2020 3 5 扬州大学管理学院 20 移动结果比较图 2020 3 5 扬州大学管理学院 21 2 加权移动平均预测法 是在简单移动平均法的基础上给近期数据以较大的权数 给远期的数据以较小的权数 计算加权移动平均数作为移动平均趋势值的一种方法 公式为 2020 3 5 扬州大学管理学院 22 例如上例中 k 3 分别给权数1 2 3 则计算的趋势值为 1382 4 1 1584 2 2 1533 7 3 6 9151 9 6 1525 3 其余类推 简单平均数为1500 1由此可见二者的区别 2020 3 5 扬州大学管理学院 23 1 移动平均的项数越多 对数列的修匀作用越大2 平均项数为奇数 只需一次平均 平均项数为偶数 需进行二次平均才能正对原数列3 数列中包含有周期变动 移动平均的项数必须与周期长度相同4 移动平均后 新数列项数比原数列项数少 奇数平均 首尾各少 n 1 2项偶数平均 首尾各少n 2项 特点 2020 3 5 扬州大学管理学院 24 由于首尾都损失若干信息量 只可用于观察趋势 但不利于直接向外进行延伸预测 缺点 2020 3 5 扬州大学管理学院 25 指数平滑法是在移动平均法基础上发展起来的一种方法 实质上是一种特殊的加权移动平均法 它一般适用于时间序列长期趋势变动和水平变动事物的预测 指数平滑法是依据时间序列的有关数据和计算出来的指数平滑值 来确定预测结果的方法 3 指数平滑法 2020 3 5 扬州大学管理学院 26 指数平滑法包括一次指数平滑法 二次指数平滑法和多次 三次以上 指数平滑法 一次指数平滑法适用于水平型变动的时间序列预测 二次指数平滑法适用于线性趋势型变动的时间序列的预测 多次指数平滑法适用于非线性趋势变动的时间序列预测 本课主要阐述一次指数平滑法 2020 3 5 扬州大学管理学院 27 一次指数平滑法是以计算出来的最后一个一次指数平滑值为基础 确定预测值的方法 若分别为时间序列中观察值的数据 当观察期的时间t 1 2 3 n 则为时间t观察值的一次指数平滑值 a为时间序列的平滑系数 且0 a 1 2020 3 5 扬州大学管理学院 28 那么时间序列各观察值的一次指数平滑公式为 式中 下一期的预测值 本期实际观察值 本期实际发生值 本期预测值 a平滑系数即权数 2020 3 5 扬州大学管理学院 29 上面的公式还可以整理为 用语言表述 下期预测值 本期预测值 平滑系数 本期实际值 本期预测值 可以看出 下期预测值等于本期预测值加上平滑系数 即加权因子 乘以本期预测误差 2020 3 5 扬州大学管理学院 30 当 时 即下期预测值等于本期预测值 也就是在进行预测时 不考虑当前实际值所反映新的影响因素的变化 认为现象变化是稳定的 当 时 即下期预测值等于本期实际发生值 也就是在进行预测时 不考虑以往影响现象变化各种因素对预测对象的作用 认为现象多变 只需考虑当前的新情况 2020 3 5 扬州大学管理学院 31 在一般情况下 进行预测 既要考虑当前的新情况 又要考虑以往影响现象变化的各种因素 如以往的销售资料 所以 取值在0和1之间 由公式 可以得出以前时间的逐期一次指数平滑值如下 2020 3 5 扬州大学管理学院 32 2020 3 5 扬州大学管理学院 33 对上述各式经过迭代后 整理后得出下式 当 很大时 式中的最后一项接近于 可略去 可表示为 2020 3 5 扬州大学管理学院 34 指数平滑法是对时间数列所有数据施以不同的权数 权数之间按首项为a 公比为1 a的等比级由近至远减少 所以它是一种特殊加权移动平均法 同时 考虑数列中所有数据对预测对象的影响 因此其预测结果更为科学 2020 3 5 扬州大学管理学院 35 应用一次指数平滑法进行预测 平滑系数a选择很关键 a取值不同 预测结果就不同 一般原则是 对于有较明显趋势变动的时间数列 a应取较大值 即a 0 6 主要是为了突出近期数据对预测值的影响 对水平型的时间数列 a应取较小值 即 a 0 3 因为水平型的数据 变动趋势不明显 随机因素多 对于介于上述两者之间的时间数列 a应取中间值 即0 3 a 0 6 2020 3 5 扬州大学管理学院 36 应用一次指数平滑法 必须确定初始平滑值 它不能从公式中求得 当时间数列的数据资料较多时 如n 10 初始值对以后预测值的影响甚小 可直接选用第一期实际观察值作为初始值 反之 如果时间数列的数据资料较少 如n 10 则因初始值对以后预测值的影响较大 这时一般采用最初几期的实际值的算术平均数作为初始值 2020 3 5 扬州大学管理学院 37 例 某企业近10个季度销售洗发露资料如下表所示 请用一次指数平滑法预测下季度洗发露销售量 2020 3 5 扬州大学管理学院 38 具体步骤如下 确定平滑系数a 本例取0 1和0 6 确定初始平滑值 由于本例n 10 故 依此计算一次指数平滑值 2020 3 5 扬州大学管理学院 39 当时 2020 3 5 扬州大学管理学院 40 当时 2020 3 5 扬州大学管理学院 41 比较和时 预测误差大小 当时 绝对误差有 平均绝对误差 2020 3 5 扬州大学管理学院 42 同样计算出a 0 6时的平均绝对误差 并与a 0 1的比较 a 0 6平均绝对误差小 所以 选择a 0 6 计算下一季度预测值 应用一次指数平滑法预测 取值一般应从0 1开始 0 2 0 3等逐个计算其预测值 分析预测误差 从中确定预测误差最小的a值 并以此确定最后预测值 2020 3 5 扬州大学管理学院 43 从计算中可以发现 计算每一个平滑值时 只需用一个实际观察值和一个上期的平滑值就可以 不需要贮存过多数据 计算过程简便 计算工作量不会过大 但其也有明显不足 它只能预测未来一期现象的表现 有其局限性 此外 指数平滑预测模型中的第一个平滑值和平滑系数 只是根据经验确定 尚无严格的数学理论加以证明 一次指数平滑法无明显趋势变动的现象进行预测是适合的 但对于有趋势变动的现象则不适合 当现象存在明显趋势时 不论值取多大 其平滑值也会滞后于实际观察值 2020 3 5 扬州大学管理学院 44 该方法的基本思想是对时间数列运用理论知识 实际经验进行判断 在确定其性质和特点的基础上 构造一个数学方程来描述长期趋势 线性 直线 模型 非线性 曲线 模型 4 数学模型法 2020 3 5 扬州大学管理学院 45 1 确定趋势方程的形式 利用散点图判断数列 大致呈直线趋势 则可以建立直线趋势方程 线性 直线 模型 2020 3 5 扬州大学管理学院 46 Yc时间数列的趋势值a b直线趋势方程的截距 斜率t时间标号 2 半数平均法 分段平均法 将数列分为两个部分 分别计算其时间和变量值的平均数 得到 T1 Y1 T2 Y2 两个坐标 代入直线两点式方程 则得到直线趋势方程 2020 3 5 扬州大学管理学院 47 由 求导数可得 3 确定趋势方程的参数 最小二乘法 条件 举例 趋势方程计算表 简捷法 若数列为奇数项 设中间序号t 0 则数列的时间序号分别为 3 2 1 0 1 2 3 若数列为偶数项 时间序号为 5 3 11 3 5 若使 t 0 则可以得到a b的简算公式 简捷法计算 2020 3 5 扬州大学管理学院 51 2003年 t 7 原点为1997年yc 80 23 5 32 7 117 47 万元 2003年 t 7 原点在1999年与2000年中间yc 98 85 2 66 7 117 47 万元 3 利用趋势方程预测 如要预测2003年的增加值 则根据前面的方程可得 预测的结果完全一致 2020 3 5 扬州大学管理学院 52 非线性 曲线 模型 一 指数趋势线的拟合Yc abt首先将上式转换为直线方程 取对数lnY lna tlnb 令 即可转化为直线方程Y a b t然后利用最小平方法求解参数 见下例 2020 3 5 扬州大学管理学院 53 537296129171232 3 978 5513 6919 4725 7132 68 序号t 199519961997199819992000 53 7971 8996 07128 39171 59229 32 年份 合计 指数趋势函数计算表 单位万件 104 04 趋势值Yc 某单位产品产量如上表所示 试预测2001年的产量 2020 3 5 扬州大学管理学院 54 则得到 a 40 246 b 1 3364Yc abt 40 246 1 3364t预测2001年的产值为 40 246 1 33647 306 39 万件 2020 3 5 扬州大学管理学院 55 二 二次曲线趋势的拟合Yc a bt ct2同样利用最小平方法的条件 求导数可以得出下面的方程 2020 3 5 扬州大学管理学院 56 为了简便运算 同样可以假设 则方程简化为 2020 3 5 扬州大学管理学院 57 例题 某产品需求量的抛物线方程计算表 单位 万件 2020 3 5 扬州大学管理学院 58 由上表可知 用消元法解得 a 222 9 b 30 50 c 2 14代入方程可得 Yc 222 9 30 5t 2 14t2 代入简化方程 即可以计算未知参数 如果将这条趋势线向外延伸 可以预测2010年的需求量 即当t 4时 Yc 222 9 30 5 4 2 14 42 378 53 万件 小结 根据资料分析数列的趋势线 1 直线趋势 数列各值的逐期增长量大致相等时 Yt a bt Yt 1 a b t 1 Yt Yt 1 b2 指数曲线趋势 数列的环比发展速度大致相等时 利用公式Yc abt可知 Yt Yt 1 abt abt 1 b3 二次曲线趋势 数列的二次增长量 即逐期增长量的逐期增长量 大致相等时 也可以通过散点图确定 2020 3 5 扬州大学管理学院 60 2020 3 5 扬州大学管理学院 61 2020 3 5 扬州大学管理学院 62 2020 3 5 扬州大学管理学院 63 三 季节变动的测定 研究季节变动 就是为了认识这些变动的规律性 以便更好地安排 组织社会生产与生活 测定季节变动的方法可分为两种 一 是不排除长期趋势的影响 直接根据原时间数列来测定 二 是依据消除长期趋势后的时间数列来测定 2020 3 5 扬州大学管理学院 64 一 简单平均法计算步骤如下 1 分别就每年各月 季 的数值计算月 季 的平均数 2 将各年同月 季 的数值加总 计算若干年内同月 季 的平均数 3 根据若干年内每个月 季 的数值 计算总的月 季 平均数 4 将若干年内同月 季 平均数与总的月 季 平均数相比 即求得用百分数表示的各月 季 的季节比率 又可以称为季节指数 某商店某商品销售量的季节变动分析单位 件 2020 3 5 扬州大学管理学院 66 在上表中 计算五年所有20个季度的总平均数为7380 再用每个特定季度的平均数除以7380 就可得该季度的季节指数 从这一结果可以看到 所谓季度指数 是指该季节的某一现象数值 与全年的平均值相比所得的比值 为了避免偶然因素对季度指数的干扰 要使用多个年份的资料来进行平均处理 从而获得一个较为稳定的指数 2020 3 5 扬州大学管理学院 67 二 趋势剔除法其核心在于充分考虑了长期趋势对于时间数列的影响 具体步骤为 1 利用前面的方法 求出对应各季

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论