




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
此文档收集于网络 仅供学习与交流 如有侵权请联系网站删除 学习资料 双曲线专题练习双曲线专题练习 题型一 双曲线的定义 1 2004 湖南 文 4 理 2 如果双曲线上一点 P 到右焦点的距离等于1 1213 22 yx 那么点 P 到右准线的距离是 13 A B 13 C 5D 5 13 13 5 2 2004 天津 理 4 文 5 设是双曲线上一点 双曲线的一条渐P1 9 2 2 2 y a x 近线方程为 分别是双曲线的左 右焦点 若则023 yx 21 F F 3 1 PF 2 PF A 1 或 5 B 6 C 7 D 9 3 2005 全国 II 理 6 已知双曲线的焦点为 点在双曲1 36 22 yx 21 FF M 线上且轴 则到直线的距离为 1 MFx 1 FMF2 A B C D 3 6 5 5 6 6 6 5 5 6 4 2005 福建 理 10 已知 F1 F2是双曲线的两焦点 0 0 1 2 2 2 2 ba b y a x 以线段 F1F2为边作正三角形 MF1F2 若边 MF1的中点在双曲线上 则双曲线 的离心率是 A B C D 324 13 2 13 13 5 2006 广东 已知双曲线 则双曲线右支上的点P到右焦点的距93 22 yx 离与点P到右准线的距离之比等于 A 2 B 2 2 3 C 2 D 4 6 2007 四川 文理 5 如果双曲线 22 1 42 xy 上一点P到双曲线右焦点的距 离是 2 那么点P到y轴的距离是 A 4 6 3 B 2 6 3 C 2 6 D 2 3 7 2007 全国 文 12 设 12 FF 分别是双曲线的左 右焦点 若1 9 2 2 y x 点P在双曲线上 且 则 12 PFPF 0 21 PFPF 此文档收集于网络 仅供学习与交流 如有侵权请联系网站删除 学习资料 A 10B 2 10C 5D 2 5 4 2007 湖北 文 12 过双曲线左焦点F的直线交双曲线的左支于1 34 22 yx M N两点 F2为其右焦点 则的值为 MNNFMF 22 5 2009 辽宁理 以知 F 是双曲线 22 1 412 xy 的左焦点 1 4 AP 是双曲线右 支上的动点 则PFPA 的最小值为 题型二 双曲线相关几何性质 一 双曲线的方程 顶点坐标 焦点坐标 1 2006 辽宁 曲线 22 1 6 106 xy m mm 与曲线 22 1 59 59 xy m mm 的 A 焦距相等 B 离心率相等 C 焦点相同 D 准线相同 2 2006 全国 I 双曲线 22 1mxy 的虚轴长是实轴长的 2 倍 则m A 1 4 B 4 C 4 D 1 4 3 2006 上海春 若R k 则 3 k 是 方程1 33 22 k y k x 表示双曲线 的 A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 4 2007 辽宁 文 3 双曲线 22 1 169 xy 的焦点坐标为 A 7 0 7 0 B 07 07 C 5 0 5 0 D 05 0 5 5 2007 福建理 6 以双曲线的右焦点为圆心 且与其渐近线相切1 169 22 yx 的圆的方程是 A B 0910 22 xyx01610 22 xyx 此文档收集于网络 仅供学习与交流 如有侵权请联系网站删除 学习资料 C D 01610 22 xyx0910 22 xyx 6 2007 福建文 10 以双曲线的右焦点为圆心 且与其右准线相切2 22 yx 的圆的方程是 A B 034 22 xyx034 22 xyx C D 054 22 xyx054 22 xyx 7 2007 全国 文理 已知双曲线的离心率为 2 焦点是 4 0 4 0 则 双曲线方程为 A 22 1 412 xy B 22 1 124 xy C 22 1 106 xy D 22 1 610 xy 8 2007 天津 理 4 文 7 设双曲线 22 22 1 0 0 yx ab ab 的离心率为3 且 它的一条准线与抛物线 2 4yx 的准线重合 则此双曲线的方程为 A 22 1 1224 yx B 22 1 4896 yx C 22 2 1 33 yx D 22 1 36 yx 9 2008 山东 10 设椭圆C1的离心率为 13 5 焦点在X轴上且长轴长为 26 若曲 线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于 8 则曲线C2的标准 方程为 A 1 34 2 2 2 2 yx B 1 513 2 2 2 2 yx C 1 43 2 2 2 2 yx D 1 1213 2 2 2 2 yx 10 2006 上海 已知双曲线中心在原点 一个顶点的坐标为 3 0 且焦距与虚 轴长之比为5 4 则双曲线的标准方程是 11 2005 上海 理 5 若双曲线的渐近线方程为 它的一个焦点是xy3 则双曲线的方程是 10 0 二 双曲线的准线 焦准距 通径 12 2004 广东 8 若双曲线的焦点到它相对应的准线的距离 0 2 22 kkyx 此文档收集于网络 仅供学习与交流 如有侵权请联系网站删除 学习资料 是 2 则k A 6 B 8 C 1 D 4 13 2006 山东 在给定双曲线中 过焦点垂直于实轴的弦长为2 焦点到相 应准线的距离为 2 1 则该双曲线的离心率为 A 2 2 B 2 C 2 D 22 14 2006 天津 如果双曲线的两个焦点分别为 0 3 1 F 0 3 2 F 一条渐近 线方程为xy2 那么它的两条准线间的距离是 A 36 B 4 C 2 D 1 三 双曲线的离心率 1 离心率的值 1 2004 全国 III 理 7 文 8 设双曲线的焦点在轴上 两条渐近线为x 则该双曲线的离心率 xy 2 1 e A 5 B C D 5 5 2 5 4 2 2005 全国 文 6 已知双曲线的一条准线为 0 1 2 2 2 ay a x 2 3 x 则该双曲线的离心率为 A B C D 2 3 2 3 2 6 3 32 3 2006 辽宁 方程 2 2520 xx 的两个根可分别作为 一椭圆和一双曲线的离心率 两抛物线的离心率 一椭圆和一抛物线的离心率 两椭圆的离心率 4 2006 全国 II 已知双曲线的一条渐近线方程为 则双1 2 2 2 2 b y a x xy 3 4 曲线的离心率为 A B C D 5 3 4 3 5 4 3 2 5 2006 湖南 过双曲线 M 2 2 2 1 y x b 的左顶点 A 作斜率为 1 的直线l 若l与 双曲线 M 的两条渐近线分别相交于 B C 且 AB BC 则双曲线 M 的离心率是 此文档收集于网络 仅供学习与交流 如有侵权请联系网站删除 学习资料 A 10 B 5 C 10 3 D 5 2 6 2007 江苏 3 在平面直角坐标系xOy 中 双曲线中心在原点 焦点在y轴 上 一条渐近线方程为20 xy 则它的离心率为 A 5 B 5 2 C 3 D 2 7 2007 全国 理 11 设 F1 F2分别是双曲线 22 22 1 xy ab 的左 右焦点 若 双曲线上存在点 A 使 F1AF2 90 且 AF1 3 AF2 则双曲线离心率为 A 5 2 B 10 2 C 15 2 D 5 8 2007 安徽 理 9 如图 1 F和 2 F分别是双曲线 的两个焦点 A和B是以O为 22 22 1 0 0 xy ab ab 圆心 以 1 FO为半径的圆与该双曲线左支的两个交点 且 ABF2是等边三角形 则双曲线的离心率为 A 3 B 5 C 2 5 D 31 9 2007 浙江 理 9 文 10 已知双曲线 22 22 1 00 xy ab ab 的左 右焦点 分别为 1 F 2 F P是准线上一点 且 12 PFPF 则双曲线的abPFPF4 21 离心率是 2 3 2 3 10 2008 陕西 8 双曲线 22 22 1 xy ab 0a 0b 的左 右焦点分别是 12 FF 过 1 F作倾斜角为30 的直线交双曲线右支于M点 若 2 MF 垂直于x轴 此文档收集于网络 仅供学习与交流 如有侵权请联系网站删除 学习资料 则双曲线的离心率为 A 6 B 3 C 2 D 3 3 11 2008 浙江 若双曲线1 2 2 2 2 b y a x 的两个焦点到一条准线的距离之比为 3 2 则双曲线的离心率是 A 3 B 5 C 3 D 5 12 2009 全国 文理 设双曲线 22 22 1 xy ab a 0 b 0 的渐近线与抛物线 y x2 1 相切 则该双曲线的离心率等于 A 3 B 2 C 5 D 6 13 2009 浙江理 过双曲线 22 22 1 0 0 xy ab ab 的右顶点A作斜率为1 的 直线 该直线与双曲线的两条渐近线的交点分别为 B C 若 1 2 ABBC 则双 曲线的离心率是 21 世纪教育网 A 2 B 3 C 5 D 10 14 2009 安徽文 下列曲线中离心率为的是 21 世纪教育网 2 6 A B C D 1 42 22 yx 1 24 22 yx 1 64 22 yx 1 104 22 yx 15 2009 江西文 设 1 F和 2 F为双曲线 22 22 1 xy ab 0 0ab 的两个焦点 若 12 FF 0 2 Pb 是正三角形的三个顶点 则双曲线的离心率为 A 3 2 B 2 C 5 2 D 3 16 2009 全国 理 已知双曲线 22 22 10 0 xy Cab ab 的右焦点为F 过 F且斜率为 3 的直线交C于AB 两点 若4AFFB 则C的离心率为 此文档收集于网络 仅供学习与交流 如有侵权请联系网站删除 学习资料 w w w k s 5 u c o m A 6 5 B 7 5 C 5 8 D 9 5 17 2009 福建文 若双曲线 22 22 1 3 xy ao a 的离心率为 2 则a等于 A 2 B 3 C 3 2 D 1 18 2005 山东 理 14 设双曲线的右焦点为 右准 22 22 1 0 0 xy ab ab F 线 与两条渐近线交于 P 两点 如果是直角三角形 则双曲线的离心lQPQF 率 e 19 2005 浙江 文理 13 过双曲线的左焦点且垂直 22 22 1 xy ab 0 0 ba 于x轴的直线与双曲线相交于M N两点 以MN为直径的圆恰好过双曲线的右 顶点 则双曲线的离心率等于 20 2007 海南宁夏 文理 13 已知双曲线的顶点到渐近线的距离为 2 焦点 到渐近线的距离为 6 则该双曲线的离心率为 21 2009 湖南理 已知以双曲线 C 的两个焦点及虚轴的两个顶点为原点的四边 形中 有一个内角为 60 o 则双曲线 C 的离心率为 2 离心率的取值范围 1 2006 福建 已知双曲线1 2 2 2 2 b y a x 的右焦点为F 若过点F且 0 0 ba 倾斜角为 60 的直线与双曲线的右支有且只有一个交点 则此双曲线离心率的 取值范围是 A B 1 2 C 2 2 1 D 2 2 2008 福建 11 双曲线1 2 2 2 2 b y a x 的两个焦点为 若为其 0 0 ba 21 F F 上一点 且 则双曲线离心率的取值范围为 21 2PFPF A 1 3 B 1 3C 3 D 3 3 2008 湖南 8 若双曲线1 2 2 2 2 b y a x 上横坐标为 3 2 a 的点到右焦 0 0 ba 此文档收集于网络 仅供学习与交流 如有侵权请联系网站删除 学习资料 点的距离大于它到左准线的距离 则双曲线离心率的取值范围是 A 1 2 B 2 C 1 5 D 5 4 2008 全国 9 设1a 则双曲线 22 22 1 1 xy aa 的离心率e的取值范围 是 A 2 2 B 25 C 2 5 D 25 5 2009 重庆理 已知双曲线 22 22 1 0 0 xy ab ab 的左 右焦点分别为 12 0 0 FcF c 若双曲线上存在一点P使 12 21 sin sin PFFa PF Fc 则该双曲线的离心 率的取值范围是 四 双曲线的渐近线方程及相关题目 1 2005 全国 II 文 6 双曲线的渐近线方程是 1 94 22 yx A B C D xy 3 2 xy 9 4 xy 2 3 xy 4 9 2 2005 天津 理 5 文 6 设双曲线以椭圆长轴的两个端点为焦1 925 22 yx 点 其准线过椭圆的焦点 则双曲线的渐近线的斜率为 A B C D 2 3 4 2 1 4 3 3 2005 湖南 理 7 文 8 已知双曲线 1的右焦点为 2 2 a x 2 2 b y 0 0 ba F 右准线与一条渐近线交于点 A OAF 的面积为 O 为原点 则两条 2 2 a 渐近线的夹角为 A 30 B 45 C 60 D 90 4 2007 陕西 理 7 文 9 已知双曲线 C 1 以 C 的右 2 2 a x 2 2 b y 0 0 ba 焦点为圆心且与 C 的浙近线相切的圆的半径是 A ab B 22 ba C D ab 5 2009 全国 文 双曲线1 36 22 yx 的渐近线与圆 0 3 222 rryx相 此文档收集于网络 仅供学习与交流 如有侵权请联系网站删除 学习资料 切 则 r A 3 B 2 C 3 D 6 6 2009 天津卷文 设双曲线 0 0 1 2 2 2 2 ba b y a x 的虚轴长为 2 焦距为 32 则双曲线的渐近线方程为 A xy2 B xy2 C xy 2 2 D xy 2 1 7 2009 四川文 已知双曲线 0 1 2 2 22 b b yx 的左 右焦点分别是 1 F 2 F 其一条渐近线方程为xy 点 3 0 yP在双曲线上 则 1 PF 2 PF A 12 B 2 C 0 D 4 8 2009 宁夏海南理 双曲线 2 4 x 2 12 y 1 的焦点到渐近线的距离为 A 2 3 B 2 C 3 D 1 五 焦半径 焦点三角形的面积 1 2005 全国 III 文理 9 已知双曲线的焦点为 F1 F2 点 M 在1 2 2 2 y x 双曲线上且则点 M 到轴的距离为 120 MFMF x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 离婚时双方财产分割及子女教育保险权益协议
- 物业公司物业费代收代缴与公共安全服务合同
- 离婚协议书新视角-关注婚姻破裂后的心理调适合同
- 智能交通居间合同签订攻略六大要素助您顺利合作
- 离婚协议范本翻译与婚姻法律事务处理合同
- 矿山开采劳务合作承包与矿山安全生产责任协议
- 离婚双方房产变更及权益调整执行合同范本
- 电商平台合伙人股权变更及供应链管理协议
- 离婚协议书范本:子女抚养及财产分配细则
- 多模态诊断方法的整合研究-洞察及研究
- 2022-2023年度省职业院校学生专业技能大赛装配式建筑智能建造赛项竞赛规程
- 小学道德与法治教学研究示范课:《家庭的记忆》教学设计详案
- 化工产品销售管理制度
- 2024年湖南长沙湘江新区所属事业单位招聘12人历年高频考题难、易错点模拟试题(共500题)附带答案详解
- 闽2023-G-01先张法预应力高强混凝土管桩DBJT13-95
- 前列腺电切手术
- 掌握敏锐观察和细节把控的沟通技巧
- 贵州省安顺市平坝区第二中学2023-2024学年七年级数学第一学期期末考试模拟试题含解析
- 2024年中国融通旅业发展集团有限公司招聘笔试参考题库附带答案详解
- 民谣酒馆创业计划书
- 电工安全常识课件
评论
0/150
提交评论