




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
此文档收集于网络,仅供学习与交流,如有侵权请联系网站删除导数-双变量问题1.构造函数利用单调性证明2.任意性与存在性问题3.整体换元双变单4.极值点偏移5.赋值法构造函数利用单调性证明形式如:方法:将相同变量移到一边,构造函数1. 已知函数对任意,不等式恒成立,试求m的取值范围。2.已知函数.设,如果对,有,求实数的取值范围.3.已知函数区间内任取两个实数,且时,若不等式恒成立,求实数的取值范围。4.已知函数是否存在实数,对任意的,且,有,恒成立,若存在求出的取值范围,若不存在,说明理由练习1:已知函数,若,且对任意的,都有,求实数的取值范围练习2.设函数.若对任意恒成立,求的取值范围.5.已知函数(1)讨论函数的单调性(2)证明:若,则对任意的,且,有恒成立6.设函数 (1)证明:在单调递减,在单调递增; (2)若对于任意,都有,求的取值范围。任意与存在性问题1. 已知函数,其中(1)若函数在上的图像恒在的上方,求实数的取值范围(2)若对任意的(为自然对数的底数)都有成立,求实数的取值范围2.已知函数, (1)讨论方程(为常数)的实根的个数。(2)若对任意,恒有成立,求的取值范围。(3)若对任意,恒有成立,求的取值范围。(4)若对任意,存在,恒有成立,求的取值范围。整体换元双变单1. 已知函数()求的单调区间;()当时,设斜率为的直线与函数相交于两点 ,求证:练习1. 已知函数,如果在其定义域上是增函数,且存在零点(的导函数) (I)求的值; (II)设是函数的图象上两点,练习2. 已知函数,;(1)已知,求的单调区间;(2)已知,若,求证:练习3.已知函数,设,比较与的大小,并说明理由。2. 已知函数有且只有一个零点,其中a0. ()求a的值; (II)设,对任意,证明:不等式恒成立.3.已知在内有两个零点,求证:。练习.已知函数f(x)lnxmx(mR),若函数f(x)有两个不同的零点x1,x2,求证:x1x2e24.已知函数(1)若对任意的恒成立,求的取值范围(2)当时,设函数,若,求证:。对称轴问题的证明1.已知函数(1)求函数的单调区间和极值;(2)已知函数的图象与函数的图象关于直线对称证明:当时,;(3)如果,且,证明: 2.已知函数(1)求函数的单调区间;(2),证明:当时, (3)若对任意,且当时,有,求的取值范围.练习. 已知函数(1)求函数的单调区间和极值;(2) 如果,且,证明:赋值法1. 已知函数,其中为有理数,且 (1)求的最小值;(2)试用(1)的结果证明:若为正有理数,若,则 (3)将(2)中的命题推广到一般形式,并用数学归纳法证明。2. 已知函数;(1)证明:恒成立(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025新疆兵团金融发展服务中心招聘事业单位工作人员(1人)笔试历年参考题库附带答案详解
- 2025年浙江金华市轨道交通集团运营有限公司第一批招考4人笔试参考题库附带答案详解
- 2025年国网中兴有限公司高校毕业生招聘(第二批)调剂笔试参考题库附带答案详解
- 2025山东中胶阿胶有限公司招聘19人笔试参考题库附带答案详解
- 2025四川自贡华荟文化产业发展有限公司招聘3人笔试参考题库附带答案详解
- 2025中国华冶科工集团有限公司校园招聘280人笔试参考题库附带答案详解
- 2025年盘锦市大洼区人民医院面向社会招聘合同制工作人员(49)笔试备考试题含答案详解(基础题)
- 2025年东北师范大学物理学院春季学期专任教师招聘(8人)模拟试卷及答案详解(历年真题)
- 2024-2025学年度医学检验(士)试题预测试卷及答案详解(夺冠系列)
- 2025教师资格通关考试题库及答案详解(各地真题)
- 班级文化建设一等奖-完整版课件
- 2023年国际心肺复苏(CPR)与心血管急救(ECC)指南
- 网站信息发布审核制度
- 财务公司有价证券投资管理办法
- 鼻内翻性乳头状瘤
- 2022版义务教育《体育与健康课程标准》测试题-含答案
- GB/T 8167-1987包装用缓冲材料动态压缩试验方法
- GB/T 34903.2-2017石油、石化与天然气工业与油气开采相关介质接触的非金属材料第2部分:弹性体
- 覆岩离层注浆减沉技术研究的新进展课件
- 折纸校本课程纲要
- 新汉语水平考试 HSK(四级)
评论
0/150
提交评论