




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2等差数列教材分析教材分析与后面教学建议整合。每节只写一个教材分析与导入设计,一节多课时的情况修改为一个,不要分课时写了,以下同,不在具体批注。三维目标一、知识与技能1.理解等差数列的概念及其性质;了解通项公式的推导过程;2.掌握通项公式.二、过程与方法来源:1.通过对等差数列通项公式的推导培养学生的观察力及归纳推理能力;2.通过等差数列变形公式的教学培养学生思维的深刻性和灵活性.三、情感态度与价值观通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识.教学重点 理解等差数列的概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题.教学难点 (1)等差数列的性质,等差数列“等差”特点的理解、把握和应用;(2)概括通项公式推导过程中体现的数学思想方法,以及从函数、方程的观点看通项公式. 教学建议 本节课先在具体例子的基础上引出等差数列的概念,接着用不完全归纳法归纳出等差数列的通项公式,并能通过通项公式与图象认识等差数列的性质.可见本课内容的安排旨在培养学生的观察分析、归纳猜想、应用能力.结合本节课特点,宜采用指导自主学习方法,即学生主动观察分析概括师生互动,形成概念启发引导,演绎结论拓展开放,巩固提高.在学法上,引导学生去联想、探索,同时鼓励学生大胆质疑,学会探究.来源:在教学过程中,遵循学生的认知规律,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发他们的学习兴趣,发挥他们的主观能动性及其在教学过程中的主体地位.创设问题情境,引起学生学习兴趣,激发他们的求知欲,培养学生由特殊到一般的认知能力.使学生认识到生活离不开数学,同样数学也是离不开生活的.学会在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化.新课导入一师 上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子)(1)0,5,10,15,20,25,;(2)48,53,58,63,;(3)18,15.5,13,10.5,8,5.5;(4)10 072,10 144,10 216,10 288,10 366,.请你们来写出上述四个数列的第7项.生 第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为10 510.来源:师 我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说.生 这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7项为78.师 说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征.生1 每相邻两项的差相等,都等于同一个常数.师 作差是否有顺序,谁与谁相减?生1 作差的顺序是后项减前项,不能颠倒.师 以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫等差数列.这就是我们这节课要研究的内容.新课导入二上两节课我们学习了数列的定义及给出数列和表示的数列的几种方法列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点。下面我们看这样一些例子。课本P41页的4个例子:0,5,10,15,20,25,48,53,58,6318,15.5,13,10.5,8,5.5来源:10072,10144,10216,10288,10366观察:请同学们仔细观察一下,看看以上四个数列有什么共同特征?来源:共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等应指明作差的顺序是后项减前项),我们给具有这种特征的数列一个名字等差数列教学过程第一课时来源:推进新课等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示).(1)公差d一定是由后项减前项所得,而不能用前项减后项来求;(2)对于数列an,若an-a n-1=d(与n无关的数或字母),n2,nN*,则此数列是等差数列,d叫做公差.师 定义中的关键字是什么?(学生在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确地、深入的理解和掌握概念的重要条件,更是学好数学及其他学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题、认识问题的能力)生 从“第二项起”和“同一个常数”.师 很好!师 请同学们思考:数列(1)、(2)、(3)、(4)的通项公式存在吗?如果存在,分别是什么? 生 数列(1)通项公式为5n-5,数列(2)通项公式为5n+43,数列(3)通项公式为2.5n-15.5,. 师 好,这位同学用上节课学到的知识求出了这几个数列的通项公式,实质上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性,下面我们来共同思考.合作探究来源:等差数列的通项公式师 等差数列定义是由一数列相邻两项之间关系而得到的,若一个等差数列an的首项是a1,公差是d,则据其定义可得什么?生 a2-a1=d,即a2=a1+d.师 对,继续说下去!生 a3-a2=d,即a3=a2+d=a1+2d;a4-a3=d,即a4=a3+d=a1+3d;师 好!规律性的东西让你找出来了,你能由此归纳出等差数列的通项公式吗?生 由上述各式可以归纳出等差数列的通项公式是an=a1+(n-1)d.师 很好!这样说来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项an了.需要说明的是:此公式只是等差数列通项公式的猜想,你能证明它吗?生 前面已学过一种方法叫迭加法,我认为可以用.证明过程是这样的:因为a2-a1=d,a3-a2=d,a4-a3=d,an-an-1=d.将它们相加便可以得到:an=a1+(n-1)d.师 太好了!真是活学活用啊!这样一来我们通过证明就可以放心使用这个通项公式了.教师精讲由上述关系还可得:am=a1+(m-1)d,即a1=am-(m-1)d.则an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,即等差数列的第二通项公式an=am+(n-m)d.(这是变通的通项公式)由此我们还可以得到.例题剖析【例1】 (1)求等差数列8,5,2,的第20项;(2)-401是不是等差数列-5,-9,-13的项?如果是,是第几项?分析(1)师 这个等差数列的首项和公差分别是什么?你能求出它的第20项吗?生1 这题太简单了!首项和公差分别是a1=8,d=5-8=2-5=-3.又因为n=20,所以由等差数列的通项公式,得a20=8+(20-1)(-3)=-49.师 好!下面我们来看看第(2)小题怎么做.分析(2)生2由a1=-5,d=-9-(-5)=-4得数列通项公式为an=-5-4(n-1).由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是这个数列的第100项.师 刚才两个同学将问题解决得很好,我们做本例的目的是为了熟悉公式,实质上通项公式就是an,a1,d,n组成的方程(独立的量有三个).说明:(1)强调当数列an的项数n已知时,下标应是确切的数字;(2)实际上是求一个方程的正整数解的问题.这类问题学生以前见得较少,可向学生着重点出本问题的实质:要判断-401是不是数列的项,关键是求出数列的通项公式an,判断是否存在正整数n,使得an=-401成立.【例2】 已知数列an的通项公式an=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?例题分析:师 由等差数列的定义,要判定an是不是等差数列,只要根据什么?生 只要看差an-an-1(n2)是不是一个与n无关的常数.师 说得对,请你来求解.生 当n2时,取数列an中的任意相邻两项an-1与an(n2)an-an-1=(pn+1)-p(n-1)+q=pn+q-(pn-p+q)=p为常数,所以我们说an是等差数列,首项a1=p+q,公差为p.师 这里要重点说明的是:(1)若p=0,则an是公差为0的等差数列,即为常数列q,q,q,.(2)若p0,则an是关于n的一次式,从图象上看,表示数列的各点(n,an)均在一次函数y=px+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.(3)数列an为等差数列的充要条件是其通项an=pn+q(p、q是常数),称其为第3通项公式.课堂练习(1)求等差数列3,7,11,的第4项与第10项.分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所求项. 解:根据题意可知a1=3,d=7-3=4.该数列的通项公式为an=3+(n-1)4,即an=4n-1(n1,nN*).a4=44-1=15,a 10=410-1=39.评述:关键是求出通项公式.(2)求等差数列10,8,6,的第20项.解:根据题意可知a1=10,d=8-10=-2.所以该数列的通项公式为an=10+(n-1)(-2),即an=-2n+12,所以a20=-220+12=-28.评述:要求学生注意解题步骤的规范性与准确性.(3)100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,请说明理由.分析:要想判断一个数是否为某一个数列的其中一项,其关键是要看是否存在一个正整数n值,使得an等于这个数.解:根据题意可得a1=2,d=9-2=7.因而此数列通项公式为an=2+(n-1)7=7n-5.令7n-5=100,解得n=15.所以100是这个数列的第15项.(4)-20是不是等差数列0, ,-7,的项?如果是,是第几项?如果不是,请说明理由.解:由题意可知a1=0,,因而此数列的通项公式为.令,解得.因为没有正整数解,所以-20不是这个数列的项.课堂小结师(1)本节课你们学了什么?(2)要注意什么?(3)在生活中能否运用?(让学生反思、归纳、总结,这样来培养学生的概括能力、表达能力)生 通过本课时的学习,首先要理解和掌握等差数列的定义及数学表达式a n-a n-1=d(n2);其次要会推导等差数列的通项公式an=a1+(n-1)d(n1).师 本课时的重点是通项公式的灵活应用,知道an,a1,d,n中任意三个,应用方程的思想,可以求出另外一个.最后,还要注意一重要关系式an=am+(n-m)d和an=pn+q(p、q是常数)的理解与应用.布置作业课本第45页习题2.2 A组第1题,B组第1题.板书设计等差数列的概念、等差数列的通项公式1.定义2.数学表达式 例1.(略)3.等差数列的通项公式 例2.(略) 练习第二课时 推进新课我们来给出等差中项的概念:若a,A,b成等差数列,那么A叫做a与b的等差中项.根据我们前面的探究不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项.如数列:1,3,5,7,9,11,13中5是3与7的等差中项,也是1和9的等差中项.9是7和11的等差中项,也是5和13的等差中项.方法引导等差中项及其应用问题的解法关键在于抓住a,A,b成等差数列2A=a+b,以促成将等差数列转化为目标量间的等量关系或直接由a,A,b间的关系证得a,A,b成等差数列.合作探究师 在等差数列an中,d为公差,若m,n,p,qN*且m+n=p+q,那么这些项与项之间有何种等量关系呢?生 我得到了一种关系am+an=ap+aq.师 能把你的发现过程说一下吗?生 受等差中项的启发,我发现a2+a4=a1+a5,a4+a6=a3+a7.从而可得在一等差数列中,若m+n=p+q,则am+an=ap+aq.师 你所得的这关系是归纳出来的,归纳有利于发现,这很好,但归纳不能算是证明!我们是否可以对这归纳的结论加以证明呢?生 我能给出证明,只要运用通项公式加以转化即可.设首项为a1,则am+an=a1+(m-1)d+a1+(n-1)d=2a1+(m+n-2)d,ap+aq=a1+(p-1)d+a1+(q-1)d=2a1+(p+q-2)d.因为我们有m+n=p+q,所以上面两式的右边相等,所以am+an=ap+aq.师 好极了!由此我们的一个重要结论得到了证明:在等差数列an的各项中,与首末两项等距离的两项的和等于首末两项的和.另外,在等差数列中,若m+n=p+q,则上面两式的右边相等,所以am+an=ap+aq.来源:同样地,我们还有:若m+n=2p,则am+an=2ap.这也是等差中项的内容.师 注意:由am+an=ap+aq推不出m+n=p+q,同学们可举例说明吗?生 我举常数列就可以说明了.师 举得好!这说明在等差数列中,am+an=ap+aq是m+n=p+q成立的必要不充分条件. 例题剖析【例1】 在等差数列an中,若a1+a6=9,a4=7,求a3,a9.师 在等差数列中通常如何求一个数列的某项?生1 在通常情况下是先求其通项公式,再根据通项公式来求这一项.生2 而要求通项公式,必须知道这个数列中的至少一项和公差,或者知道这个数列的任意两项(知道任意两项就知道公差,这在前面已研究过了).生3 本题中,只已知一项和另一个双项关系式,想到从这双项关系式入手师 好,我们下面来解,请一个同学来解一解,谁来解?生4 因为an是等差数列,所以a1+a6=a4+a3=9a3=9-a4=9-7=2,所以可得d=a4-a3=7-2=5.来源:又因为a9=a4+(9-4)d=7+55=32,所以我们求出了a3=2,a9=32.【例2】某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4千米(不含4千米)计费10元.如果某人乘坐该市的出租车去往14 km处的目的地,且一路畅通,等候时间为0,需要支付多少元的车费?师 本题是一道实际应用题,它所涉及到的是什么知识方面的数学问题?生 这个实际应用题可化归为等差数列问题来解决.师 为什么?生 根据题意,当该市出租车的行程大于或等于4 km时,每增加1 km,乘客需要支付1.2元.所以,我们可以建立一个等差数列来进行计算车费.师 这个等差数列的首项和公差分别是多少?生 分别是11.2,1.2.师 好,大家计算一下本题的结果是多少?生 需要支付车费23.2元.(教师按课本例题的解答示范格式)评述:本例是等差数列用于解决实际问题的一个简单应用,做此题的目的是让大家学会从实际问题中抽象出等差数列的模型,用等差数列知识解决实际问题.课堂练习1.在等差数列an中,来源:(1)若a5=a,a10=b,求a15.解:由等差数列an知2a10=a5+a15,即2b=a+a15,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 查询任务调度优化-洞察及研究
- 强电专业考试题及答案解析
- 电子类专业试题及答案
- 高一专业测试题及答案
- 一例癌痛患者的个案护理
- 2025至2030中国中性防锈汽轮机油行业项目调研及市场前景预测评估报告
- 母婴护理风险防控策略课件
- 颌面部多发性骨折护理
- 2025至2030中国MicroBulk交付系统行业项目调研及市场前景预测评估报告
- 生态修复项目树木种植与生态修复效果评估承包合同
- 学堂在线 中国传统艺术-篆刻、书法、水墨画体验与欣赏 章节测试答案
- 锻压机床行业分析报告
- 2025一级造价工程师《建设工程造价案例分析》(土木建筑工程、安装工程)考前必背笔记
- 交投面试题目及答案
- 2023年一级建造师《建设工程项目管理》真题及答案解析
- 2025年企业文化企业建设知识竞赛-锦江之星服务知识竞赛历年参考题库含答案解析(5套)
- 2025年全国青少年禁毒知识竞赛试题(附答案)
- 2025年法律基础知识考题库和答案
- 集合运算说课课件
- 木丹颗粒治疗糖尿病周围神经病变病例分析
- 自吸水泵培训课件
评论
0/150
提交评论