



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
23.2.3关于原点对称的点的坐标教学目标【知识与技能】1.理解点P与P关于原点对称时,它们的横、纵坐标的关系;2.能运用关于原点对称的点的坐标的关系解决具体问题.【过程与方法】通过观察、操作、交流、归纳等过程,培养学生探究问题的能力、动手能力、观察能力以及与他人合作交流的能力.【情感态度】结合坐标系内点的坐标对称关系的学习,培养学生合作交流的意识和归纳类比的能力,增强数学学习的信心和乐趣.教学重点关于原点对称的点的坐标关系及其应用.教学难点运用中心对称的知识导出关于原点对称的点的坐标性质.教学过程一、情境导入,初步认识问题1以前我们学习过关于x轴、y轴对称的点的坐标问题,你能说说关于x轴、y轴对称的点的坐标的关系吗?问题2在平面直角坐标系中,点A的坐标为(-3,2),则点A关于原点O的对称点A的坐标是什么呢?你能说说吗?【教学说明】让学生通过对问题的思考,初步感受关于原点对称的点的坐标的确定方法,激发学习兴趣和求知欲望,导入新知.二、思考探究,获取新知探究 如图,在直角坐标系中,作出下列已知点关于原点O的对称点,并写出它们的坐标.A(4,0) B(0,-3) C(2,1)D(-1,2) E(-4,-3) 思考通过你的作图,你能说出这些点和它们关于原点O的对称点的坐标之间有什么关系吗?【教学说明】通过让学生在平面直角坐标系中画出某点关于原点O的对称点的过程,可让学生初步感受到关于原点对称的点的坐标的特征,学生在自我探索的过程中,体会成功的喜悦和学习的乐趣.如图所示,可得到点A、B、C、D、E关于原点O的对称点分别为A、B、C、D、E.以点C为例,作C点关于原点O的对称点C的方法为:连接CO并延长至C,使CO=CO,则C点即为点C关于原点O的对称点.过C作CMx轴于M,作CNx轴于N.易知OCMOCN.CM=CN,OM=ON.又C(2,1),即OM=2,CM=1,ON=2,CN=1.C点坐标为(-2,-1).同理可知点A、B、D、E关于原点O的对称点A、B、D、E的坐标分别为(-4,0),(0,3),(1,-2),(4,3)【归纳结论】两个点关于原点对称时,它们的横、纵坐标的符号相反,即点P(x,y)关于原点O的对称点P的坐标为(-x,-y).【教学说明】在上面的探索活动过程中,先让学生动手画出一些点关于原点的对称点,并写出它们的坐标,然后让学生观察坐标之间的变化,总结出规律,从而归纳出结论,即本节的重点.在这一活动中,既学到了新知识,又锻炼了学生的数学归纳能力.三、典例精析,掌握新知例1 图,利用关于原点对称的点的坐标的特点,作出与ABC关于原点对称的图形.分析:(1)由图可知,A、B、C三点坐标分别是什么?(2)它们关于原点的对称点的坐标又应分别是什么?(3)这样画出的ABC与前面利用中心对称来作图有什么区别?解:(1)A、B、C三点坐标分别是(-4,1)、(-1,-1)、(-3,2)(2)它们关于原点对称的点的坐标分别是(4,-1)、(1,1)、(3,-2)(3)略例2 如图,平行四边形的中心在坐标原点,ADBC,D(3,2),C(1,-2),求A、B两点的坐标.分析:因为平行四边形是中心对称图形,所以相对的两个顶点关于中心对称,图中该平行四边形的中心为原点,故A与C、B与D关于原点对称,从而可求出A、B坐标.解:平行四边形是中心对称图形,A与C,B与D关于原点对称.A(-1,2),B(-3,-2).四、运用新知,深化理解1.点M(-2,3)关于原点的对称点M的坐标为( )A.(-2,-3)B.(2,-3)C.(3,-2)D.(2,3)2.下列各点中哪两个点关于原点O对称?A(-5,0),B(0,2),C(2,-1),D(2,0),E(0,5),F(-2,1),G(-2,-1)五、师生互动,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版个人信用担保与信用修复及债务化解服务合同
- 二零二五年度国际教育培训合作合同
- 2025版车库停车场环境绿化与美化合同
- 2025版快递快递运输保险服务合同
- 二零二五年度存量房屋买卖与装修材料供应及安装合同
- 2025版数据中心建设劳务分包服务合同
- 二零二五年度第七章高铁建设项目施工合同管理规范
- 二零二五年度电梯维保与应急物资储备服务承包合同
- 二零二五年度水泥基防水涂料施工与监理合同
- 2025液压缸液压杆加工维护合同
- 电力设计合同补充协议
- 村部出租合同协议
- 《颈椎疾病》课件
- 2025山东华鲁恒升化工股份有限公司招聘(300人)笔试参考题库附带答案详解
- 2025年高考数学必刷题分类:第3讲、等式与不等式的性质(教师版)
- 滤泡性淋巴瘤
- 固态锂电池技术进展与应用前景深度剖析
- 果苗购销合同种苗购销合同
- 高考英语复习课件:形容词比较级和最高级辨析
- 《公司并购与整合》课件
- 大数据与会计专业专科综合实践报告
评论
0/150
提交评论