




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3函数的奇偶性与周期性教学目标1.结合具体函数,了解函数奇偶性的含义;2.会运用函数图象理解和研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性学习内容知识梳理 1 函数的奇偶性奇偶性定义图象特点奇函数设函数yf(x)的定义域为D,如果对D内的任意一个x,都有xD,且f(x)f(x),则这个函数叫做奇函数关于原点对称偶函数设函数yg(x)的定义域为D,如果对D内的任意一个x,都有xD,且g(x)g(x),则这个函数叫做偶函数关于y轴对称2. 周期性(1)周期函数对于函数yf(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(xT)f(x),那么就称函数yf(x)为周期函数,称T为这个函数的周期(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期例题讲解 题型一判断函数的奇偶性例1判断下列函数的奇偶性:(1)f(x);(2)f(x)(x1) ;(3)f(x).思维启迪确定函数的奇偶性时,必须先判定函数定义域是否关于原点对称若对称,再验证f(x)f(x)或其等价形式f(x)f(x)0是否成立解(1)由,得x3.f(x)的定义域为3,3,关于原点对称又f(3)f(3)0,f(3)f(3)0.即f(x)f(x)f(x)既是奇函数,又是偶函数(2)由,得10时,f(x)(x)22(x22)f(x);当x0时,f(x)(x)22(x22)f(x);当x0时,f(0)0,也满足f(x)f(x)故该函数为奇函数题型二函数周期性的应用例2(1)定义在R上的函数f(x)满足f(x6)f(x),当3x1时,f(x)(x2)2;当1x3时,f(x)x.则f(1)f(2)f(3)f(2 015)等于()A335 B336 C1 678 D2 012(2)已知f(x)是定义在R上的偶函数,并且f(x2),当2x3时,f(x)x,则f(105.5)_.思维启迪(1)f(x)的周期性已知,可以通过一个周期内函数值的变化情况求和(2)通过题意先确定函数的周期性答案(1)B(2)2.5解析(1)利用函数的周期性和函数值的求法求解f(x6)f(x),T6.当3x1时,f(x)(x2)2;当1x3时,f(x)x,f(1)1,f(2)2,f(3)f(3)1,f(4)f(2)0,f(5)f(1)1,f(6)f(0)0,f(1)f(2)f(6)1,f(1)f(2)f(6)f(7)f(8)f(12)f(2 005)f(2 006)f(2 010)1,f(1)f(2)f(2 010)1335.而f(2 011)f(2 012)f(2 013)f(2 014)f(2 015)f(1)f(2)f(3)f(4)f(5)121011.f(1)f(2)f(2 015)3351336.(2)由已知,可得f(x4)f(x2)2f(x)故函数的周期为4.f(105.5)f(4272.5)f(2.5)f(2.5)22.53,由题意,得f(2.5)2.5.f(105.5)2.5.思维升华(1)函数的周期性反映了函数在整个定义域上的性质对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值(2)求函数周期的方法巩 固(1)若f(x)是R上周期为5的奇函数,且满足f(1)1,f(2)2,则f(3)f(4)等于 ()A1 B1 C2 D2(2)设f(x)是周期为2的奇函数,当0x1时,f(x)2x(1x),则f等于()A B C. D.答案(1)A(2)A解析(1)由f(x)是R上周期为5的奇函数知f(3)f(2)f(2)2,f(4)f(1)f(1)1,f(3)f(4)1,故选A.(2)f(x)是周期为2的奇函数,ffff2.题型三函数性质的综合应用例3设f(x)是(,)上的奇函数,f(x2)f(x),当0x1时,f(x)x.(1)求f()的值;(2)当4x4时,求f(x)的图象与x轴所围成图形的面积;(3)写出(,)内函数f(x)的单调区间思维启迪可以先确定函数的周期性,求f();然后根据函数图象的对称性、周期性画出函数图象,求图形面积、写单调区间解(1)由f(x2)f(x)得,f(x4)f(x2)2f(x2)f(x),所以f(x)是以4为周期的周期函数,f()f(14)f(4)f(4)(4)4.(2)由f(x)是奇函数与f(x2)f(x),得:f(x1)2f(x1)f(x1),即f(1x)f(1x)故知函数yf(x)的图象关于直线x1对称又当0x1时,f(x)x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示当4x4时,f(x)的图象与x轴围成的图形面积为S,则S4SOAB44.(3)函数f(x)的单调递增区间为4k1,4k1 (kZ),单调递减区间为4k1,4k3 (kZ)思维升华关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题,体现了转化思想巩 固(1)已知偶函数f(x)在区间0,)上单调递增,则满足f(2x1)f的x的取值范围是()A. B.C. D.(2)已知定义在R上的奇函数f(x)满足f(x4)f(x),且在区间0,2上是增函数,则()Af(25)f(11)f(80)Bf(80)f(11)f(25)Cf(11)f(80)f(25)Df(25)f(80)f(11)答案(1)A(2)D解析(1)偶函数满足f(x)f(|x|),根据这个结论,有f(2x1)ff(|2x1|)f,进而转化为不等式|2x1|,解这个不等式即得x的取值范围是.(2)由函数f(x)是奇函数且f(x)在0,2上是增函数可以推知,f(x)在2,2上递增,又f(x4)f(x)f(x8)f(x4)f(x),故函数f(x)以8为周期,f(25)f(1),f(11)f(3)f(34)f(1),f(80)f(0),故f(25)f(80)0)的周期函数()(6)函数f(x)为R上的奇函数,且f(x2)f(x),则f(2 014)0.()2 (2013山东)已知函数f(x)为奇函数,且当x0时,f(x)x2,则f(1)等于()A2 B0 C1 D2答案A解析f(1)f(1)(11)2.3 已知f(x)ax2bx是定义在a1,2a上的偶函数,那么ab的值是()A B. C. D答案B解析依题意b0,且2a(a1),a,则ab.4 已知f(x)在R上是奇函数,且满足f(x4)f(x),当x(0,2)时,f(x)2x2,则f(2 015)等于 ()A2 B2 C98 D98答案A解析f(x4)f(x),f(x)是以4为周期的周期函数,f(2 015)f(50343)f(3)f(1)又f(x)为奇函数,f(1)f(1)2122,即f(2 015)2.5 设函数f(x)是定义在R上的奇函数,若当x(0,)时,f(x)lg x,则满足f(x)0的x的取值范围是_答案(1,0)(1,)解析画草图,由f(x)为奇函数知:f(x)0的x的取值范围为(1,0)(1,)B组1 (2013广东)定义域为R的四个函数yx3,y2x,yx21,y2sin x中,奇函数的个数是()A4 B3 C2 D1答案C解析由奇函数的定义可知yx3,y2sin x为奇函数2 设f(x)是定义在R上的奇函数,当x0时,f(x)2x2x,则f(1)等于 ()A3 B1 C1 D3答案A解析f(x)是奇函数,当x0时,f(x)2x2x,f(1)f(1)2(1)2(1)3.3 定义在R上的偶函数f(x),对任意x1,x20,)(x1x2),有0,则()Af(3)f(2)f(1)Bf(1)f(2)f(3)Cf(2)f(1)f(3)Df(3)f(1)21,f(3)f(2)f(1),即f(3)f(2)0,且a1)若g(2)a,则f(2)等于 ()A2 B.C. Da2答案B解析f(x)为奇函数,g(x)为偶函数,f(2)f(2),g(2)g(2)a,f(2)g(2)a2a22,f(2)g(2)g(2)f(2)a2a22,由、联立,g(2)a2,f(2)a2a2.6 函数f(x)在R上为奇函数,且x0时,f(x)1,则当x0时,f(x)1,当x0,f(x)f(x)(1),即x0时,f(x)(1)1.7 若函数f(x)x2|xa|为偶函数,则实数a_.答案0解析函数f(x)x2|xa|为偶函数,f(x)f(x),即(x)2|xa|x2|xa|,|xa|xa|,a0.8 已知函数f(x)满足:f(1),4f(x)f(y)f(xy)f(xy)(x,yR),则f(2 015)_.答案解析方法一令x1,y0时,4f(1)f(0)f(1)f(1),解得f(0),令x1,y1时,4f(1)f(1)f(2)f(0),解得f(2),令x2,y1时,4f(2)f(1)f(3)f(1),解得f(3),依次求得f(4),f(5),f(6),f(7),f(8),f(9),可知f(x)是以6为周期的函数,f(2 015)f(33565)f(5).方法二f(1),4f(x)f(y)f(xy)f(xy),构造符合题意的函数f(x)cos x,f(2 015)cos.9 已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x1对称(1)求证:f(x)是周期为4的周期函数;(2)若f(x) (0x1),求x5,4时,函数f(x)的解析式(1)证明由函数f(x)的图象关于直线x1对称,有f(x1)f(1x),即有f(x)f(x2)又函数f(x)是定义在R上的奇函数,故有f(x)f(x)故f(x2)f(x)从而f(x4)f(x2)f(x),即f(x)是周期为4的周期函数(2)解由函数f(x)是定义在R上的奇函数,有f(0)0.x1,0)时,x(0,1,f(x)f(x).故x1,0时,f(x).x5,4时,x41,0,f(x)f(x4).从而,x5,4时,函数f(x).10已知函数f(x)是奇函数(1)求实数m的值;(2)若函数f(x)在区间1,a2上单调递增,求实数a的取值范围解(1)设x0,所以f(x)(x)22(x)x22x.又f(x)为奇函数,所以f(x)f(x),于是x0时,f(x)x22xx2mx,所以m2.(2)由(1)知f(x)在1,1上是增函数,要使f(x)在1,a2上单调递增结合f(x)的图象知所以1a3,故实数a的取值范围是(1,3C组1 已知f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,且g(x)f(x1),则f(2 013)f(2 015)的值为 ()A1 B1C0 D无法计算答案C解析由题意,得g(x)f(x1),又f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,g(x)g(x),f(x)f(x),f(x1)f(x1),f(x)f(x2),f(x)f(x4),f(x)的周期为4,f(2 013)f(1),f(2 015)f(3)f(1),又f(1)f(1)g(0)0,f(2 013)f(2 015)0.2 设奇函数f(x)的定义域为R,最小正周期T3,若f(1)1,f(2),则a的取值范围是 ()Aa1或a Ba1C1a Da答案C解析函数f(x)为奇函数,则f(1)f(1)由f(1)f(1)1,得f(1)1;函数的最小正周期T3,则f(1)f(2),由1,解得1a.3 设函数f(x)是定义在R上的偶函数,且对任意的xR恒有f(x1)f(x1),已知当x0,1时,f(x)2x,则有2是函数f(x)的周期;函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;函数f(x)的最大值是1,最小值是0.其中所有正确命题的序号是_答案解析在f(x1)f(x1)中,令x1t,则有f(t2)f(t),因此2是函数f(x)的周期,故正确;当x0,1时,f(x)2x是增函数,则f(x)在1,0上是减函数,根据函数的周期性知,函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,故正确;在区间1,1上,f(x)的最大值为f(1)f(1)2,f(x)的最小值为f(0)1,故错误4 函数f(x)的定义域为Dx|x0,且满足对于任意x1,x2D,有f(x1x2)f(x1)f(x2)(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)1,f(x1)2,且f(x)在(0,)上是增函数,求x的取值范围解(1)对于任意x1,x2D,有f(x1x2)f(x1)f(x2),令x1x21,得f(1)2f(1),f(1)0. (2)令x1x21,有f(1)f(1)f(1),f(1)f(1)0.令x11,x2x有f(x)f(1)f(x),f(x)f(x),f(x)为偶函数(3)依题设有f(44)f(4)f(4)2,由(2)知,f(x)是偶函数,f(x1)2f(|x1|)f(16)又f(x)在(0,)上是增函数0|x1|16,解之得15x17且x1.x的取值范围是x|15x17且x15 设函数f(x)在(,)上满足f(2x)f(2x),f(7x)f(7x),且在闭区间0,7上只有f(1)f(3)0.(1)试判断函数yf(x)的奇偶性;(2)试求方程f(x)0在闭区间2 005,2 005上的根的个数,并证明你的结论解(1)f(1)0,且f(x)在0,7上只有f(1)f(3)0,又f(2x)f(2x),令x3,f(1)f(5)0,f(1)f(1),且f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新能源行业2025年品牌忠诚度现状与未来趋势研究报告
- 农业保险市场发展态势与风险控制策略报告
- 英利新材料安全知识培训课件
- 园区物业服务培训课件
- 2025年新能源汽车电池包技术创新空间利用效率提升应用场景报告
- 2025副高卫生专业技术资格考试放射卫生(副高)试题及答案解析
- 农村一二三产业融合中的农村医疗保健服务与公共卫生体系建设案例报告
- 2025年餐饮服务流程规范试题解析与答案
- 2025年自然灾害应急救援安全教育培训考试试题及答案解析
- 2024年体育教师专业知识考试题库及答案
- 中华护理学术会议收获
- 跨境电商风险管理-洞察阐释
- 教师数字提升培训课件
- 中西医结合医院“十五五”发展规划
- 消化性溃疡疾病的护理
- 2025-2030年中国少儿期刊出版行业市场深度调研及前景趋势与投资研究报告
- 2025年河南开封水务投资集团有限公司招聘笔试参考题库含答案解析
- JG/T 220-2007铜铝复合柱翼型散热器
- T/CCAA 39-2022碳管理体系要求
- 江苏省扬州市广陵区梅岭中学2025届七下数学期末综合测试模拟试题含解析
- 2025年浙江省公务员录用考试《行测》真题及答案解析(B类)
评论
0/150
提交评论