中考数学真题分类汇编第三期专题5二元一次方程组及其应用试题含解析.doc_第1页
中考数学真题分类汇编第三期专题5二元一次方程组及其应用试题含解析.doc_第2页
中考数学真题分类汇编第三期专题5二元一次方程组及其应用试题含解析.doc_第3页
中考数学真题分类汇编第三期专题5二元一次方程组及其应用试题含解析.doc_第4页
中考数学真题分类汇编第三期专题5二元一次方程组及其应用试题含解析.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二元一次方程(组)及其应用一.选择题1. (2018湖北荆州3分)九章算术是中国传统数学名著、其中记载:“今有牛五、羊二、直金十两;牛二、羊五、直金八两问牛、羊各直金几何?”译文:“假设有5头牛、2只羊、值金10两;2头牛、5只羊、值金8两问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x两、y两、则可列方程组为()ABCD【解答】解:由题意可得、故选:A2. (2018湖北十堰3分)我国古代数学著作九章算术卷七有下列问题:“今有共买物、人出八、盈三:人出七、不足四、问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品、如果每人出8钱、则剩余3钱:如果每人出7钱、则差4钱问有多少人、物品的价格是多少?设有x人、物品的价格为y元、可列方程(组)为()ABCD=【分析】设有x人、物品的价格为y元、根据所花总钱数不变列出方程即可【解答】解:设有x人、物品的价格为y元、根据题意、可列方程:、故选:A【点评】本题考查了由实际问题抽象出二元一次方程的应用、解答本题的关键是读懂题意、设出未知数、找出合适的等量关系3. (2018乐山3分)方程组=x+y4的解是()ABCD解:由题可得:、消去x、可得2(4y)=3y、解得y=2、把y=2代入2x=3y、可得x=3、方程组的解为故选D4(2018辽宁大连3分)孙子算经中记载了一道题、大意是:100匹马恰好拉了100片瓦、已知1匹大马能拉3片瓦、3匹小马能拉1片瓦、问有多少匹大马、多少匹小马?设有x匹大马、y匹小马、根据题意可列方程组为 解:由题意可得: 故答案为:二.填空题1.(2018云南省曲靖3分)一个书包的标价为115元、按8折出售仍可获利15%、该书包的进价为80元【解答】解:设该书包的进价为x元、根据题意得:1150.8x=15%x、解得:x=80答:该书包的进价为80元故答案为:80三.解答题1. (2018广西贺州8分)某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车、其中B型车单价是A型车单价的6倍少60元(1)求A.B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张、投入购车的资金不超过5.86万元、但购进这批自行年的总数不变、那么至多能购进B型车多少辆?【解答】解:(1)设A型自行车的单价为x元/辆、B型自行车的单价为y元/辆、根据题意得:、解得:答:A型自行车的单价为260元/辆、B型自行车的单价为1500元/辆(2)设购进B型自行车m辆、则购进A型自行车(130m)辆、根据题意得:260(130m)+1500m58600、解得:m20答:至多能购进B型车20辆2.(2018云南省昆明8分)(列方程(组)及不等式解应用题)水是人类生命之源为了鼓励居民节约用水、相关部门实行居民生活用水阶梯式计量水价政策若居民每户每月用水量不超过10立方米、每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米、则超过部分每立方米在基本水价基础上加价100%、每立方米污水处理费不变甲用户4月份用水8立方米、缴水费27.6元;乙用户4月份用水12立方米、缴水费46.3元(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元、该用户7月份最多可用水多少立方米?【分析】(1)设每立方米的基本水价是x元、每立方米的污水处理费是y元、然后根据等量关系即可列出方程求出答案(2)设该用户7月份可用水t立方米(t10)、根据题意列出不等式即可求出答案【解答】解:(1)设每立方米的基本水价是x元、每立方米的污水处理费是y元解得:答:每立方米的基本水价是2.45元、每立方米的污水处理费是1元(2)设该用户7月份可用水t立方米(t10)102.45+(t10)4.9+t64解得:t15答:如果某用户7月份生活用水水费计划不超过64元、该用户7月份最多可用水15立方米【点评】本题考查学生的应用能力、解题的关键是根据题意列出方程和不等式、本题属于中等题型3(2018重庆市B卷)(4.00分)为实现营养套餐的合理搭配、某电商推出两款适合不同人群的甲、乙两种袋装的混合粗粮甲种袋装粗粮每袋含有3千克A粗粮、1千克B粗粮、1千克C粗粮;乙种袋装粗粮每袋含有1千克A粗粮、2千克B粗粮、2千克C粗粮甲、乙两种袋装粗粮每袋成本分别等于袋中的A.B.C三种粗粮成本之和已知每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍、每袋乙种粗粮售价比每袋甲种粗粮售价高20%、乙种袋装粗粮的销售利润率是20%当销售这两款袋装粗粮的销售利润率为24%时、该电商销售甲、乙两种袋装粗粮的袋数之比是(商品的销售利润率=100%)【分析】根据每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍、可得甲的成本、乙的成本;根据乙种袋装粗粮的销售利润率是20%、可得乙的售价、根据每袋乙种粗粮售价比每袋甲种粗粮售价高20%、可得甲的售价、根据甲的利润+乙的利润=(甲的成本+乙的成本)24%、根据等式的性质、可得答案【解答】解:设A的单价为x元、B的单价为y元、C的单价为z元、当销售这两款袋装粗粮的销售利润率为24%时、该电商销售甲的销售量为a袋、乙的销售量为b袋、由题意、得A一袋的成本是7.5x=3x+y+z、化简、得y+z=4.5x;乙一袋的成本是x+2y+2z=x+2(y+z)=x+9x=10x、乙一袋的售价为10x(1+20%)=12x、甲一袋的售价为10x根据甲乙的利润、得(10x7.5x)a+20%10xb=(7.5xa+10xb)24%化简、得2.5a+2b=1.8a+2.4b0.7a=0.4b=、故答案为:【点评】本题考查了二元一次方程的应用、利润、成本价与利润率之间的关系的应用、理解题意得出等量关系是解题的关键4. (2018莱芜10分)快递公司为提高快递分拣的速度、决定购买机器人来代替人工分拣已知购买甲型机器人1台、乙型机器人2台、共需14万元;购买甲型机器人2台、乙型机器人3台、共需24万元(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件、该公司计划购买这两种型号的机器人共8台、总费用不超过41万元、并且使这8台机器人每小时分拣快递件数总和不少于8300件、则该公司有哪几种购买方案?哪个方案费用最低、最低费用是多少万元?【分析】(1)利用二元一次方程组解决问题;(2)用不等式组确定方案、利用一次函数找到费用最低值【解答】解:(1)设甲型机器人每台价格是x万元、乙型机器人每台价格是y万元、根据题意得解这个方程组得:答:甲、乙两种型号的机器人每台价格分别是6万元、4万元(2)设该公可购买甲型机器人a台、乙型机器人(8a)台、根据题意得解这个不等式组得a为正整数a的取值为2、3、4、该公司有3种购买方案、分别是购买甲型机器人2台、乙型机器人6台购买甲型机器人3台、乙型机器人5台购买甲型机器人4台、乙型机器人4台设该公司的购买费用为w万元、则w=6a+4(8a)=2a+32k=20w随a的增大而增大当a=2时、w最小、w最小=22+32=36(万元)该公司购买甲型机器人2台、乙型机器人6台这个方案费用最低、最低费用是36万元【点评】本题是一次函数综合题、考查列一次函数解析式、一次函数增减性、二元一次方程组和不等式组的应用5. (2018陕西8分)经过一年多的精准帮扶、小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国、小明家网店中红枣和小米这两种商品的相关信息如下表:商品红枣小米规格1kg/袋2kg/袋成本(元/袋)4038售价(元/袋)6054根据上表提供的信息、解答下列问题:(1)已知今年前五个月、小明家网店销售上表中规格的红枣和小米共3000kg、获得利润42万元、求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况、估计今年6月到10月这后五个月、小明家网店还能销售上表中规格的红枣和小米共2000kg、其中、这种规格的红枣的销售量不低于600kg假设这后五个月、销售这种规格的红枣味x(kg)、销售这种规格的红枣和小米获得的总利润为y(元)、求出y与x之间的函数关系式、并求出这后五个月、小明家网店销售这种规格的红枣和小米至少获得总利润多少元【答案】(1)前五个月小明家网店销售这种规格的红枣1500袋、销售小米750袋;(2)小明家网店销售这种规格的红枣和小米至少获得总利润23200元【解析】【分析】(1)设前五个月小明家网店销售这种规格的红枣a袋、销售小米b袋、根据等量关系:销售红枣和小米共3000kg、获得利润42万元、列方程组进行求解即可得;(2)根据总利润=红枣的利润+小米的利润、可得y与x间的函数关系式、根据一次函数的性质即可得答案.【详解】 (1)设前五个月小明家网店销售这种规格的红枣a袋、销售小米b袋、根据题意得:、解得:、答:前五个月小明家网店销售这种规格的红枣1500袋、销售小米750袋;(2)根据题意得:y(6040)x(5438)12x16000、k=120、y随x的增大而增大、x600、当x600时、y取得最小值、最小值为y126001600023200、小明家网店销售这种规格的红枣和小米至少获得总利润23200元【点睛】本题考查了二元一次方程组的应用、一次函数的应用、弄清题意、找出各个量之间的关系是解题的关键.6.(2018湖北咸宁10分)为拓宽学生视野、引导学生主动适应社会、促进书本知识和生活经验的深度融合、我市某中学决定组织部分班级去赤壁开展研学旅行活动、在参加此次活动的师生中、若每位老师带17个学生、还剩12个学生没人带;若每位老师带18个学生、就有一位老师少带4个学生现有甲、乙两种大客车、它们的载客量和租金如表所示甲种客车乙种客车载客量/(人/辆)3042租金/(元/辆)300400学校计划此次研学旅行活动的租车总费用不超过3100元、为了安全、每辆客车上至少要有2名老师(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐、又要保证每辆客车上至少要有2名老师、可知租用客车总数为 辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由【答案】(1)老师有16名、学生有284名;(2)8;(3)共有3种租车方案、最节省费用的租车方案是:租用甲种客车3辆、乙种客车5辆【解析】【分析】(1)设老师有x名、学生有y名、根据等量关系:若每位老师带17个学生、还剩12个学生没人带;若每位老师带18个学生、就有一位老师少带4个学生、列出二元一次方程组、解出即可;(2)由(1)中得出的教师人数可以确定出最多需要几辆汽车、再根据总人数以及汽车最多的是42座的可以确定出汽车总数不能小于=(取整为8)辆、由此即可求出;(3)设租用x辆乙种客车、则甲种客车数为:(8x)辆、由题意得出400x+300(8x)3100、得出x取值范围、分析得出即可【详解】(1)设老师有x名、学生有y名、依题意、列方程组为、解得:、答:老师有16名、学生有284名;(2)每辆客车上至少要有2名老师、汽车总数不能大于8辆;又要保证300名师生有车坐、汽车总数不能小于=(取整为8)辆、综合起来可知汽车总数为8辆、故答案为:8;(3)设租用x辆乙种客车、则甲种客车数为:(8x)辆、车总费用不超过3100元、400x+300(8x)3100、解得:x7、为使300名师生都有座、42x+30(8x)300、解得:x5、5x7(x为整数)、共有3种租车方案:方案一:租用甲种客车3辆、乙种客车5辆、租车费用为2900元;方案二:租用甲种客车2辆、乙种客车6辆、租车费用为3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论