


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习资料收集于网络,仅供参考有关椭圆的中点弦问题一、教学目标:掌握解决有关椭圆的中点弦问题的多种方法学会解题方法的迁移了解设而不求的数学思想二、教学重点:掌握解决有关椭圆的中点弦问题的多种方法三、教学难点:掌握解决有关椭圆的中点弦问题的多种方法四、教学过程1、引入过程圆锥曲线是高考的重点,也是一个难点。每年的高考中都占有20-40分,必有一道解答题。而椭圆又是圆锥曲线中的十分重要的一部分,并且很多双曲线和抛物线的问题都可以借用解决椭圆问题的方法来解决。所以学习好了椭圆就相当于学好了圆锥曲线的一大半。而有关椭圆的中点弦问题又是椭圆中十分重要、典型的问题。有关椭圆的中点弦问题中在考试中一般以三种类型的题目出现:(1)求弦所在的直线方程;(2)求弦的中点的轨迹方程;(3)求弦的中点坐标。那么今天这节课我们主要来学习一下弦所在的直线方程的求法。2、例题讲解例1 已知直线L和椭圆相交于A,B两点,为A,B的中点,求直线L的方程。解:方法一:代入法设两点坐标为,(1) 当直线L斜率不存在时,显然不符合题意。(2) 直线L斜率存在,设为k,则直线方程为:将直线带入椭圆方程得:所以所求直线为:分析:这种方法是运用方程的思想,直线与椭圆的交点也就是直线方程与椭圆方程的方程组的解。但是在解题中并没有把交点直接求出来,而是运用了韦达定理得到用k所表示的两根之和。这里把A,B的坐标设出来而没有求,也是设而不求的思想。方法二:点差法设两点坐标为,两式作差得:变形可得:所以所求直线为:分析:这种方法利用了作差变形,直接得到了直线的斜率,对于解题十分方便。这里也没有求出点的坐标,也体现了设而不求的思想。方法三:作差法设两点坐标分别为:两式作差得:分析:作差后直接得到一个关于x与y的方程,因为x与y就是直线上的点,所以这个方程就是所求的直线方程。总结:运用第一种方法解题时,思路比较简单清楚,就是为了得到两根之和的表达式,但是需要列出方程组后把直线方程带入椭圆方程,计算量比较大。这种思路是解决圆锥曲线问题的一种最基础、最通用、最重要的方法。第二种点差法比第一种简单方便,主要是用来解决中点弦问题的。它不仅可以用来求中点弦的直线方程问题,也可以求中点弦中点的轨迹方程以及求中点坐标。第三种方法是专门针对求直线方程的,它是一种很特殊的方法,对于这类求直线方程的问题能够快速而精确的解决。前面两种方法体现了数学中的设而不求的思想,这种思想在解决圆锥曲线的问题中经常使用。这些方法不仅可以解决椭圆的中点弦问题,对于双曲线与抛物线也可以使用,但是有时候也要注意他们自身的一些特性。练习:已知直线L与双曲线相交于A,B两点,为A,B的中点,求直线L的方程。五、课堂小结今天我们学习了有关椭圆中点弦中求弦所在直线方程的问题的三种解法,特别是点差法,它是解决有关椭圆中点弦问题的一种十分通用且方便的方法。当我们在平时遇到问题时,我们一定要多思考,尽量一题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网格化系统汇报
- 芯片技术提取颜色
- 小红书内容制作实战课程
- 新思想纲要解读
- 三甲医院妇产科进修汇报
- 皮肤科常用药物
- 小学信息技术融合实践路径
- 洋葱的植物细胞结构解析
- 星空露营节活动方案
- 部编版九年级下册历史第一单元复习课件
- 自然灾害信息员业务知识考核试题
- 房产租赁合同文本与房产租赁合同模板
- 2022年临沧市市级单位遴选(选调)笔试试题及答案
- 重庆市沙坪坝区人民医院消防安全整改工程施工方案
- 施工组织设计施工总体部署完整版
- 天津电网规划设计技术原则
- YY 0054-2010血液透析设备
- LY/T 2383-2014结构用木材强度等级
- GB/T 8017-2012石油产品蒸气压的测定雷德法
- GB/T 528-2009硫化橡胶或热塑性橡胶拉伸应力应变性能的测定
- 2023年江苏省中学生生物学竞赛(奥赛)初赛试题和答案
评论
0/150
提交评论