神经网络分类器.doc_第1页
神经网络分类器.doc_第2页
神经网络分类器.doc_第3页
神经网络分类器.doc_第4页
神经网络分类器.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人工智能第四次课内实验报告人工智能课内实验报告(四) 班级:姓名:学号:实验题目:神经网络分类器实验目的通过编写神经网络分类器,掌握神经网络的分类方法;掌握BP算法及其具体应用。实验内容本次实验是对在和不在正弦函数曲线上的两类点进行分类。所使用的算法是神经网络中的BP算法。实验原理及算法描述线性分类器不能解决非线性问题,因此必须使用非线性分类器解决非线性问题。非线性分类常采用神经网络算法,本次实验中使用的是BP算法。BP (Back Propagation)神经网络是一种神经网络学习算法。其由输入层、隐层、输出层组成的阶层型神经网络,隐层可扩展为多层。相邻层之间各神经元进行全连接,而每层各神经元之间无连接,网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,各神经元获得网络的输入响应产生连接权值(Weight)。然后按减小希望输出与实际输出误差的方向,从输出层经各中间层逐层修正各连接权,回到输入层。此过程反复交替进行,直至网络的全局误差趋向给定的极小值,即完成学习的过程。算法描述:输入层:单元i的输入:;单元数量:d;单元i的输出:; 单元i的激活函数:线性函数;隐层:单元j的输入:netj;单元数量:nH; 单元j的输出:; 单元j的激活函数:非线性函数;输出层:单元k的输入: ;单元数量:c ;单元k的输出:单元k的激活函数:非线性函数两层神经网络图如下:分析:(1)给定隐层单元及输出层单元的激活函数,一个神经网络就可以实现一个对输入特征向量x的非线性映射。因此,神经网络本质上是一个非线性函数。(2)给定隐层单元及输出层单元的激活函数,该非线性函数所对应的映射关系完全由权系数决定。不同的权系数对应不同的非线性映射。(3)神经网络学习的目的,就是根据已知的训练样本,确定神经网络的权系数。这一过程称为训练过程。在训练过程结束后,对于新样本x,根据神经网络的输出进行判决。(4)对于C类分类问题,神经网络的输出为。神经网络的判决规则为:如果,则判x属于wk。(5)令,可以看出神经网络实际上实现了C个非线性的鉴别函数,并根据鉴别函数的取值进行分类。(6)神经网络的训练目标:调整权系数w,即所有的wkj及wij,使得对于训练集中的每一个训练样本(x,t),网络的输出尽可能满足:(7)优化准则:对于样本集D,使下述误差函数取得最小值:权系数的调整: BP算法描述:对于给定的样本集D=(x,t),初始化网络结构d*nH*c。初始化权系数w,学习效率、阈值。随机从D中取出一个样本(x,t),根据该样本更新权系数w:计算,如果结束训练,并认为此时的w为最优。否则转第2步继续进行循环。实验结果运行程序选择初始参数,输入正弦函数参数:采样文件输出至当前目录下的initSample.dat文件中,第一列为x坐标,第二列为y坐标,第三列为t值,在正弦曲线上为1,不在为-1:再选择训练样本,屏幕上输出最优权值,第一行wkj为隐层到输出层的权值,第二、三行wij为输入层到隐层的权值:TestSample.dat如下:其中第三列大于0的点在曲线上,小于0的点不在曲线上。结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论