平面向量讲义 - 学生版.doc_第1页
平面向量讲义 - 学生版.doc_第2页
平面向量讲义 - 学生版.doc_第3页
平面向量讲义 - 学生版.doc_第4页
平面向量讲义 - 学生版.doc_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学习目标1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念知识点一向量的概念思考1在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别?思考2两个数量可以比较大小,那么两个向量能比较大小吗?梳理向量与数量(1)向量:既有_,又有_的量统称为向量(2)数量:只有_,没有_的量称为数量知识点二向量的表示方法思考1向量既有大小又有方向,那么如何形象、直观地表示出来?思考20的模长是多少?0有方向吗?思考3单位向量的模长是多少?梳理(1)向量的表示具有_和长度的线段叫作有向线段,以A为起点,以B为终点的有向线段记作_,线段AB的长度也叫作有向线段的长度,记作_向量可以用_来表示有向线段的长度表示_,即长度(也称模)箭头所指的方向表示_向量也可以用黑体小写字母如a,b,c,来表示,书写用 , , ,来表示(2)_的向量叫作零向量,记作_;_的向量,叫作a方向上的单位向量,记作a0.知识点三相等向量与共线向量思考1已知A,B为平面上不同两点,那么向量和向量相等吗?它们共线吗?思考2向量平行、共线与平面几何中的直线、线段平行、共线相同吗?思考3若ab,bc,那么一定有ac吗?梳理(1)相等向量:_且_的向量叫作相等向量(2)平行向量:如果表示两个向量的有向线段所在的直线_,则称这两个向量平行或共线记法:a与b平行或共线,记作_规定:零向量与_平行类型一向量的概念例1下列说法正确的是()A向量与向量的长度相等 B两个有共同起点,且长度相等的向量,它们的终点相同C零向量没有方向 D任意两个单位向量都相等反思与感悟解决向量概念问题一定要紧扣定义,对单位向量与零向量要特别注意方向问题跟踪训练1下列说法正确的有_若|a|b|,则ab或ab;向量与是共线向量,则A、B、C、D四点必在同一条直线上;向量与是平行向量类型二共线向量与相等向量例2如图所示,ABC的三边均不相等,E、F、D分别是AC、AB、BC的中点(1)写出与共线的向量;(2)写出与的模大小相等的向量;(3)写出与相等的向量反思与感悟(1)非零向量共线是指向量的方向相同或相反(2)共线的向量不一定相等,但相等的向量一定共线跟踪训练2如图所示,O是正六边形ABCDEF的中心(1)与的模相等的向量有多少个?(2)是否存在与长度相等、方向相反的向量?若存在,有几个?(3)与共线的向量有哪些?类型三向量的表示及应用例3一辆汽车从A点出发向西行驶了100 km到达B点,然后又改变方向,向西偏北50的方向走了200 km到达C点,最后又改变方向,向东行驶了100 km到达D点(1)作出向量、;(2)求|.反思与感悟准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点跟踪训练3在如图的方格纸上,已知向量a,每个小正方形的边长为1.(1)试以B为终点画一个向量b,使ba;(2)在图中画一个以A为起点的向量c,使|c|,并说出向量c的终点的轨迹是什么?1下列结论正确的个数是()温度含零上和零下温度,所以温度是向量; 向量的模是一个正实数;向量a与b不共线,则a与b都是非零向量; 若|a|b|,则ab.A0 B1C2 D32下列说法错误的是()A若a0,则|a|0 B零向量是没有方向的 C零向量与任一向量平行 D零向量的方向是任意的3如图所示,梯形ABCD为等腰梯形,则两腰上的向量与的关系是()A. B| C. D.4如图所示,在以12方格纸中的格点(各线段的交点)为起点和终点的向量中(1)写出与、相等的向量;(2)写出与的模相等的向量1向量是既有大小又有方向的量,从其定义可以看出向量既有代数特征又有几何特征,因此借助于向量,我们可以将某些代数问题转化为几何问题,又将几何问题转化为代数问题,故向量能起到数形结合的桥梁作用2共线向量与平行向量是一组等价的概念两个共线向量不一定要在一条直线上当然,同一直线上的向量也是平行向量3注意两个特殊向量零向量和单位向量,零向量与任何向量都平行,单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一个单位圆21向量的加法学习目标1.理解并掌握向量加法的概念,了解向量加法的物理意义及其几何意义.2.掌握向量加法的三角形法则和平行四边形法则,并能熟练地运用这两个法则作两个向量的加法运算.3.了解向量加法的交换律和结合律,并能依据几何意义作图解释向量加法运算律的合理性知识点一向量加法的定义及其运算法则分析下列实例:(1)飞机从广州飞往上海,再从上海飞往北京(如图),这两次位移的结果与飞机从广州直接飞往北京的位移是相同的(2)有两条拖轮牵引一艘轮船,它们的牵引力分别是F13 000 N,F22 000 N,牵引绳之间的夹角为60(如图),如果只用一条拖轮来牵引,也能产生跟原来相同的效果思考1从物理学的角度来讲,上面实例中位移、牵引力说明了什么?体现了向量的什么运算?思考2上述实例中位移的和运算、力的和运算分别用了什么法则?梳理(1)向量加法的定义求_的运算,叫作向量的加法(2)向量加法的法则三角形法则已知向量a,b,在平面上任取一点A,作a,b,再作向量,则向量叫作向量a与b的和,记作_,即ab_平行四边形法则已知向量a,b,在平面内任取一点A,作a,b,再作平行于的b,连接DC,则四边形ABCD为平行四边形向量叫作向量a与b的和,表示为_ab向量加法的三角形法则和平行四边形法则实际上就是向量加法的几何意义知识点二向量加法的运算律思考1实数加法有哪些运算律?思考2根据图中的平行四边形ABCD,验证向量加法是否满足交换律(注:a,b)思考3根据图中的四边形ABCD,验证向量加法是否满足结合律(注:a,b,c)梳理向量加法的运算律交换律ab_结合律(_)ca(_)类型一向量加法的三角形法则和平行四边形法则例1如图(1)(2),已知向量a,b,c,求作向量ab和abc. (1)(2)反思与感悟向量加法的平行四边形法则和三角形法则的区别和联系区别:(1)三角形法则中强调“首尾相接”,平行四边形法则中强调的是“共起点”(2)三角形法则适用于任意两个非零向量求和,而平行四边形法则仅适用于不共线的两个向量求和联系:(1)当两个向量不共线时,向量加法的三角形法则和平行四边形法则是统一的(2)三角形法则作出的图形是平行四边形法则作出的图形的一半跟踪训练1如图所示,O为正六边形ABCDEF的中心,化简下列向量(1)_;(2)_;(3)_.类型二向量加法运算律的应用例2化简:(1);(2);(3).反思与感悟(1)根据向量加法的交换律使各向量首尾连接,再运用向量的结合律调整向量顺序后相加(2)向量求和的多边形法则:An1An.特別地,当An和A1重合时,An1A10.跟踪训练2已知正方形ABCD的边长等于1,则|_.类型三向量加法的实际应用例3在静水中船的速度为20 m/min,水流的速度为10 m/min,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向引申探究1若本例中条件不变,则经过1 h,该船的实际航程是多少?2若本例中其他条件不变,改为若船沿垂直水流的方向航行,求船实际行进的方向与岸方向的夹角的正切值反思与感悟向量既有大小又有方向的特性在实际生活中有很多应用,准确作出图像是解题关键跟踪训练3如图,用两根绳子把重10 N的物体W吊在水平杆子AB上,ACW150,BCW120,求A和B处所受力的大小(绳子的重量忽略不计)1.如图,在正六边形ABCDEF中,等于()A0 B. C. D.2.如图,D,E,F分别是ABC的边AB,BC,CA的中点,则下列等式中错误的是()A.0 B.0C. D.3()()等于()A. B. C. D.4.如图所示,在四边形ABCD中,则四边形为()A矩形 B正方形 C平行四边形 D菱形5小船以10 km/h的静水速度沿垂直于对岸的方向行驶,同时河水的流速为10 km/h,则小船的实际航行速度的大小为_km/h.1三角形法则和平行四边形法则都是求向量和的基本方法,两个法则是统一的,当两个向量首尾相连时常选用三角形法则,当两个向量共起点时,常选用平行四边形法则2向量的加法满足交换律,因此在进行多个向量的加法运算时,可以按照任意的次序和任意的组合去进行3在使用向量加法的三角形法则时要特别注意“首尾相接”和向量的特征是从第一个向量的起点指向第二个向量的终点向量相加的结果是向量,如果结果是零向量,一定要写成0,而不应写成0.2.2向量的减法学习目标1.理解相反向量的含义,向量减法的意义及减法法则.2.掌握向量减法的几何意义.3.能熟练地进行向量的加、减运算知识点一相反向量思考实数a的相反数为a,向量a与a的关系应叫作什么?梳理与a_的向量,叫作a的相反向量,记作_(1)规定:零向量的相反向量仍是_(2)(a)a.(3)a(a)_.(4)若a与b互为相反向量,则a_,b_,ab_.知识点二向量的减法思考1根据向量的加法,如何求作ab?思考2向量减法的三角形法则是什么?梳理(1)定义:向量a加上_,叫作a与b的差,即ab_.求两个向量_的运算,叫作向量的减法(2)几何意义:在平面内任取一点O,作a,b,则向量ab_,如图所示(3)文字叙述:如果把向量a与b的起点放在O点,那么由向量b的终点B指向被减向量a的终点A,得到的向量就是ab.知识点三|a|b|,|ab|,|a|b|三者的关系思考在三角形中有两边之和大于第三边,两边之差小于第三边,结合这一性质及向量加、减法的几何意义,|a|b|,|ab|,|a|b|三者关系是怎样的?梳理当向量a,b不共线时,作a,b,则ab,如图(1),根据三角形的三边关系,则有|a|b|ab|b|,作法同上,如图(3),此时|ab|a|b|.故对于任意向量a,b,总有|a|b|ab|a|b|.因为|ab|a(b)|,所以|a|b|ab|a|b|,即|a|b|ab|a|b|.将两式结合起来即为|a|b|ab|a|b|.类型一向量减法的几何作图例1如图,已知向量a,b,c不共线,求作向量abc.引申探究若本例条件不变,则abc如何作?反思与感悟在求作两个向量的差向量时,当两个向量有共同始点,直接连接两个向量的终点,并指向被减向量,就得到两个向量的差向量;若两个向量的始点不重合,先通过平移使它们的始点重合,再作出差向量跟踪训练1如图所示,已知向量a,b,c,d,求作向量ab,cd.类型二向量减法法则的应用例2化简下列式子:(1); (2)()()反思与感悟向量减法的三角形法则的内容:两向量相减,表示两向量起点的字母必须相同,这样两向量的差向量以减向量的终点字母为起点,以被减向量的终点字母为终点跟踪训练2化简:(1)()();(2)()()类型三向量减法几何意义的应用例3已知|6,|9,求|的取值范围反思与感悟(1)如图所示,在平行四边形ABCD中,若a,b,则ab,ab.(2)在公式|a|b|ab|a|b|中,当a与b方向相反且|a|b|时,|a|b|ab|;当a与b方向相同时,|ab|a|b|.(3)在公式|a|b|ab|a|b|中,当a与b方向相同且|a|b|时,|a|b|ab|;当a与b方向相反时,|ab|a|b|.跟踪训练3在四边形ABCD中,设a,b,且ab,若|ab|ab|,则四边形ABCD的形状是()A梯形 B矩形 C菱形 D正方形1.如图所示,在ABCD中,a,b,则用a,b表示向量和分别是()Aab和abBab和baCab和baDba和ba2化简的结果等于()A. B. C. D.3若菱形ABCD的边长为2,则|_.4若向量a与b满足|a|5,|b|12,则|ab|的最小值为_,|ab|的最大值为_5.如图,在五边形ABCDE中,若四边形ACDE是平行四边形,且a,b,c,试用a,b,c表示向量,及.1向量减法的实质是向量加法的逆运算利用相反向量的定义,就可以把减法转化为加法即减去一个向量等于加上这个向量的相反向量如aba(b)2在用三角形法则作向量减法时,要注意“差向量连接两向量的终点,箭头指向被减向量”解题时要结合图形,准确判断,防止混淆3平行四边形ABCD的两邻边AB、AD分别为a,b,则两条对角线表示的向量为ab,ba,ab,这一结论在以后应用非常广泛,应该加强理解并掌握31数乘向量学习目标1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关共线向量问题知识点一向量数乘的定义思考1实数与向量相乘的结果是实数还是向量?思考2向量3a,3a与a从长度和方向上分析具有怎样的关系?思考3a的几何意义是什么?梳理数乘向量一般地,实数与向量a的积是一个向量,记作_它的长度为|a|a|.它的方向:当0时,a与a的方向相同;当0时,a与a的方向相反;当0时,a0,方向任意知识点二向量数乘的运算律思考类比实数的运算律,向量数乘有怎样的运算律?梳理向量数乘运算律(1)(a)()a.(2)()aaa.(3)(ab)ab.知识点三向量共线定理思考若b2a,b与a共线吗?梳理(1)向量共线的判定定理a 是一个_向量,若存在一个实数,使得_,则向量b与非零向量a共线(2)向量共线的性质定理若向量b与非零向量a共线,则存在一个实数,使得b_.知识点四向量的线性运算向量的加法、减法和实数与向量积的综合运算,通常称为向量的线性运算(或线性组合)类型一向量数乘的基本运算例1(1)化简:2(2a4b)4(5a2b)(2)已知向量为a,b,未知向量为x,y,向量a,b,x,y满足关系式3x2ya,4x3yb,求向量x,y.反思与感悟(1)向量的数乘运算类似于代数多项式的运算,例如实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在实数与向量的乘积中同样适用,但是这里的“同类项”、“公因式”是指向量,实数看作是向量的系数(2)向量也可以通过列方程和方程组求解,同时在运算过程中多注意观察,恰当的运用运算律,简化运算跟踪训练1(1)(ab)3(ab)8a_.(2)若2(cb3y)b0,其中a,b,c为已知向量,则未知向量y_.类型二向量共线的判定及应用命题角度1判定向量共线或三点共线例2已知非零向量e1,e2不共线(1)若ae1e2,b3e12e2,判断向量a,b是否共线(2)若e1e2,2e18e2,3(e1e2),求证:A、B、D三点共线反思与感悟(1)向量共线的判断(证明)是把两向量用共同的已知向量来表示,进而互相表示,从而判断共线(2)利用向量共线定理证明三点共线,一般先任取两点构造向量,从而将问题转化为证明两向量共线,需注意的是,在证明三点共线时,不但要利用ba(a0),还要说明向量a,b有公共点跟踪训练2已知非零向量e1,e2不共线,如果e12e2,5e16e2,7e12e2,则共线的三个点是_命题角度2利用向量共线求参数值例3已知非零向量e1,e2不共线,欲使ke1e2和e1ke2共线,试确定k的值反思与感悟利用向量共线定理,即b与a(a0)共线ba,既可以证明点共线或线共线问题,也可以根据共线求参数的值跟踪训练3已知A,B,P三点共线,O为直线外任意一点,若xy,则xy_.类型三用已知向量表示其他向量例4在ABC中,若点D满足2,则等于()A. B.C. D.反思与感悟用已知向量表示未知向量的求解思路(1)先结合图形的特征,把待求向量放在三角形或平行四边形中(2)然后结合向量的三角形法则或平行四边形法则及向量共线定理用已知向量表示未知向量(3)当直接表示比较困难时,可以利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程跟踪训练4如图,在ABC中,D,E为边AB的两个三等分点,3a,2b,求,.1已知a5e,b3e,c4e,则2a3bc等于()A5e B5e C23e D23e2在ABC中,M是BC的中点,则等于()A. B.C2 D.3设e1,e2是两个不共线的向量,若向量me1ke2 (kR)与向量ne22e1共线,则()Ak0 Bk1Ck2 Dk4已知ABC的三个顶点A,B,C及平面内一点P,且,则()AP在ABC内部BP在ABC外部CP在AB边上或其延长线上DP在AC边上5如图所示,已知,用,表示.1实数与向量可以进行数乘运算,但不能进行加减运算,例如a,a是没有意义的2a的几何意义就是把向量a沿着a的方向或反方向扩大或缩小为原来的|倍向量表示与向量a同向的单位向量3向量共线定理是证明三点共线的重要工具即三点共线问题通常转化为向量共线问题4已知O,A,B是不共线的三点,且mn(m,nR),A,P,B三点共线mn1.32平面向量基本定理学习目标1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题知识点平面向量基本定理思考1如果e1,e2是两个不共线的确定向量,那么与e1,e2在同一平面内的任一向量a能否用e1,e2表示?依据是什么?思考2如果e1,e2是共线向量,那么向量a能否用e1,e2表示?为什么?思考3若存在1,2R,1,2R,且a1e12e2,a1e12e2,那么1,1,2,2有何关系?梳理(1)平面向量基本定理如果e1,e2是同一平面内的两个_向量,那么对于这一平面内的_向量a,存在唯一一对实数1,2,使a_.(2)基底平面内_的向量e1,e2叫作表示这一平面内所有向量的一组基底类型一对基底概念的理解例1如果e1,e2是平面内两个不共线的向量,那么下列说法中不正确的是()e1e2(,R)可以表示平面内的所有向量;对于平面内任一向量a,使ae1e2的实数对(,)有无穷多个;若向量1e11e2与2e12e2共线,则有且只有一个实数,使得1e11e2(2e12e2);若存在实数,使得e1e20,则0.A BC D反思与感悟考查两个向量是否能构成基底,主要看两向量是否非零且不共线此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来跟踪训练1若e1,e2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是()Ae1e2,e2e1 B2e1e2,e1e2 C2e23e1,6e14e2 De1e2,e1e2类型二平面向量基本定理的应用例2如图所示,在ABCD中,E,F分别是BC,DC边上的中点,若a,b,试以a,b为基底表示,.引申探究若本例中其他条件不变,设a,b,试以a,b为基底表示,.反思与感悟将不共线的向量作为基底表示其他向量的方法有两种:一种是利用向量的线性运算及法则对所求向量不断转化,直至能用基底表示为止;另一种是列向量方程组,利用基底表示向量的唯一性求解跟踪训练2如图所示,在AOB中,a,b,M,N分别是边OA,OB上的点,且a,b,设与相交于点P,用基底a,b表示.1下列关于基底的说法正确的是()平面内不共线的任意两个向量都可作为一组基底;基底中的向量可以是零向量;平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的A B C D2.如图,已知Aa,b,3,用a,b表示,则等于()Aab B.abC.ab D.ab3已知向量e1,e2不共线,实数x,y满足(2x3y)e1(3x4y)e26e13e2,则x_,y_.4.如图所示,在正方形ABCD中,设a,b,c,则当以a,b为基底时,可表示为_,当以a,c为基底时,可表示为_5已知在梯形ABCD中,ABDC,且AB2CD,E,F分别是DC,AB的中点,设a,b,试用a、b为基底表示,.1对基底的理解(1)基底的特征基底具备两个主要特征:基底是两个不共线向量;基底的选择是不唯一的平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件(2)零向量与任意向量共线,故不能作为基底2准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决41平面向量的坐标表示42平面向量线性运算的坐标表示学习目标1.了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来知识点一平面向量的正交分解思考如果向量a与b的夹角是90,则称向量a与b垂直,记作ab.互相垂直的两个向量能否作为平面内所有向量的一组基底?梳理把一个向量分解为_的向量,叫作把向量正交分解知识点二平面向量的坐标表示思考1如图,向量i,j是两个互相垂直的单位向量,向量a与i的夹角是30,且|a|4,以向量i,j为基底,如何表示向量a?思考2在平面直角坐标系内,给定点A的坐标为A(1,1),则A点位置确定了吗?给定向量a的坐标为a(1,1),则向量a的位置确定了吗?思考3设向量(1,1),O为坐标原点,若将向量平移到,则的坐标是多少?A点坐标是多少?梳理(1)平面向量的坐标在平面直角坐标系中,分别取与x轴、y轴方向相同的两个_i、j作为基底对于平面内的任意向量a,由平面向量基本定理可知,有且只有一对实数x,y,使得axiyj.我们把实数对(x,y)叫作向量a的坐标,记作a(x,y)在平面直角坐标平面中,i(1,0),j(0,1),0(0,0)(2)点的坐标与向量坐标的区别和联系区别表示形式不同向量a(x,y)中间用等号连接,而点A(x,y)中间没有等号意义不同点A(x,y)的坐标(x,y)表示点A在平面直角坐标系中的位置,a(x,y)的坐标(x,y)既表示向量的大小,也表示向量的方向另外(x,y)既可以表示点,也可以表示向量,叙述时应指明点(x,y)或向量(x,y)联系当平面向量的始点在原点时,平面向量的坐标与向量终点的坐标相同知识点三平面向量的坐标运算思考设i、j是分别与x轴、y轴同向的两个单位向量,若设a(x1,y1),b(x2,y2),则ax1iy1j,bx2iy2j,根据向量的线性运算性质,向量ab,ab,a(R)如何分别用基底i、j表示?梳理设a(x1,y1),b(x2,y2),A(x1,y1),B(x2,y2)数学公式文字语言表述向量加、减法ab(x1x2,y1y2)向量和与差的坐标分别等于各向量相应坐标的和与差向量数乘a(x1,y1)实数与向量积的坐标分别等于实数与向量的相应坐标的乘积向量坐标(x2x1,y2y1)一个向量的坐标等于其终点的坐标减去始点的相应坐标类型一平面向量的坐标表示例1如图,在平面直角坐标系xOy中,OA4,AB3,AOx45,OAB105,a,b.四边形OABC为平行四边形(1)求向量a,b的坐标;(2)求向量的坐标;(3)求点B的坐标反思与感悟在表示点、向量的坐标时,可利用向量的相等、加减法运算等求坐标,也可以利用向量、点的坐标的定义求坐标一般利用不等式思想求解,即把问题条件转化为关于参数的不等式(组),再解不等式(组)就可以求得参数的取值范围跟踪训练1已知边长为2的正三角形ABC,顶点A在坐标原点,AB边在x轴上,点C在第一象限,D为AC的中点,分别求向量,的坐标类型二平面向量的坐标运算例2已知A(2,4),B(3,1),C(3,4)设a,b,c.(1)求3ab3c;(2)求满足ambnc的实数m,n的值反思与感悟向量坐标运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行(2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算(3)向量的线性坐标运算可完全类比数的运算进行跟踪训练2已知a(1,2),b(2,1),求:(1)2a3b;(2)a3b;(3)ab.类型三平面向量坐标运算的应用例3已知点A(2,3),B(5,4),C(7,10)若(R),试求当为何值时:(1)点P在第一、三象限的角平分线上;(2)点P在第三象限内反思与感悟(1)待定系数法是最基本的数学方法之一,实质是先将未知量设出来,建立方程(组)求出未知数的值,是待定系数法的基本形式,也是方程思想的一种基本应用(2)坐标形式下向量相等的条件:相等向量的对应坐标相等;对应坐标相等的向量是相等向量由此可建立相等关系求某些参数的值跟踪训练3已知向量a(2,1),b(1,2),若manb(9,8)(m,nR),则mn的值为_1设平面向量a(3,5),b(2,1),则a2b等于()A(7,3) B(7,7) C(1,7) D(1,3)2已知向量(3,2),(5,1),则向量的坐标是()A. B. C(8,1) D(8,1)3已知四边形ABCD的三个顶点A(0,2),B(1,2),C(3,1),且2,则顶点D的坐标为()A. B. C(3,2) D(1,3)4已知点A(0,1),B(3,2),向量(4,3),则向量等于()A(7,4) B(7,4) C(1,4) D(1,4)5如图,在66的方格纸中,若起点和终点均在格点的向量a,b,c满足cxayb(x,yR),则xy_.1向量的正交分解是把一个向量分解为两个互相垂直的向量,是向量坐标表示的理论依据向量的坐标表示,沟通了向量“数”与“形”的特征,使向量运算完全代数化2要区分向量终点的坐标与向量的坐标由于向量的起点可以任意选取,如果一个向量的起点是坐标原点,这个向量终点的坐标就是这个向量的坐标;若向量的起点不是原点,则向量的终点坐标不是向量的坐标,此时(xBxA,yByA)3向量和、差的坐标就是它们对应向量坐标的和、差,数乘向量的坐标等于这个实数与原来向量坐标的积43向量平行的坐标表示学习目标1.理解用坐标表示的平面向量共线的条件.2.能根据平面向量的坐标,判断向量是否共线.3.掌握三点共线的判断方法知识点向量平行已知下列几组向量:(1)a(0,3),b(0,6); (2)a(2,3),b(4,6);(3)a(1,4),b(3,12); (4)a(,1),b(,1)思考1上面几组向量中,a,b有什么关系?思考2以上几组向量中,a,b共线吗?思考3当ab时,a,b的坐标成比例吗?思考4如果两个非零向量共线,你能通过其坐标判断它们是同向还是反向吗?梳理设a,b是非零向量,且a(x1,y1),b(x2,y2)(1)当ab时,有_(2)当ab且b不平行于坐标轴,即x20,y20时,有_即若两个向量(与坐标轴不平行)平行,则它们相应的坐标_;若两个向量相对应的坐标成比例,则它们_类型一向量共线的判定与证明例1(1)下列各组向量中,共线的是()Aa(2,3),b(4,6) Ba(2,3),b(3,2)Ca(1,2),b(7,14) Da(3,2),b(6,4)(2)已知A(2,1),B(0,4),C(1,3),D(5,3)判断与是否共线?如果共线,它们的方向相同还是相反?反思与感悟此类题目应充分利用向量共线定理或向量共线坐标的条件进行判断,特别是当利用向量共线坐标的条件进行判断时,要注意坐标之间的搭配跟踪训练1已知A,B,C三点的坐标分别为(1,0),(3,1),(1,2),求证:.类型二利用向量共线求参数例2已知a(1,2),b(3,2),当k为何值时,kab与a3b平行?引申探究1若本例条件不变,判断当kab与a3b平行时,它们是同向还是反向?2在本例中已知条件不变,若问题改为“当k为何值时,akb与3ab平行?”,又如何求k的值?反思与感悟根据向量共线条件求参数问题,一般有两种思路,一是利用向量共线定理ab(b0)列方程组求解,二是利用向量共线的坐标表达式x1y2x2y10求解跟踪训练2设向量a(1,2),b(2,3),若向量ab与向量c(4,7)共线,则_.类型三三点共线问题例3已知向量(k,12),(4,5),(10,k)当k为何值时,A,B,C三点共线?反思与感悟(1)三点共线问题的实质是向量共线问题,两个向量共线只需满足方向相同或相反,两个向量共线与两个向量平行是一致的,利用向量平行证明三点共线需分两步完成:证明向量平行;证明两个向量有公共点(2)若A,B,C三点共线,即由这三个点组成的任意两个向量共线跟踪训练3已知A(1,3),B,C(9,1),求证:A,B,C三点共线1已知a(1,2),b(2,y),若ab,则y的值是()A1 B1 C4 D42与a(6,8)平行的单位向量为()A. B. C.或 D.3已知三点A(1,2),B(2,4),C(3,m)共线,则m的值为_4已知四边形ABCD的四个顶点A,B,C,D的坐标依次是(3,1),(1,2),(1,1),(3,5)求证:四边形ABCD是梯形5已知A(3,5),B(6,9),M是直线AB上一点,且|3|,求点M的坐标1两个向量共线条件的表示方法已知a(x1,y1),b(x2,y2),(1)当b0,ab.(2)x1y2x2y10.(3)当x2y20时,即两向量的相应坐标成比例2向量共线的坐标表示的应用(1)已知两个向量的坐标判定两向量共线联系平面几何平行、共线知识,可以证明三点共线、直线平行等几何问题要注意区分向量的共线、平行与几何中的共线、平行(2)已知两个向量共线,求点或向量的坐标,求参数的值,求轨迹方程要注意方程思想的应用,向量共线的条件,向量相等的条件等都可作为列方程的依据学习目标1.了解平面向量数量积的物理背景,即物体在力F的作用下产生位移s所做的功.2.掌握平面向量数量积的定义和运算律,理解其几何意义.3.会用两个向量的数量积求两个向量的夹角以及判断两个向量是否垂直知识点一两向量的夹角思考1平面中的任意两个向量都可以平移至同一起点,它们存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?思考2ABC为正三角形,设a,b,则向量a与b的夹角是多少?梳理(1)夹角:已知两个_a和b,作a,b,则_(0180)叫作向量a与b的夹角(如图所示)当0时,a与b_;当180时,a与b_.(2)垂直:如果a与b的夹角是90,我们说a与b垂直,记作ab.规定零向量可与任一向量垂直知识点二平面向量数量积的物理背景及其定义一个物体在力F的作用下产生位移s,如图思考1如何计算这个力所做的功?思考2力做功的大小与哪些量有关?梳理(1)数量积:已知两个非零向量a与b,它们的夹角为,我们把_叫作a与b的数量积(或内积),记作ab,即ab_.(2)数量积的特殊情况当两个向量相等时,aa_.当两个向量e1,e2是单位向量时,e1e2_.知识点三平面向量数量积的几何意义思考1什么叫作向量b在向量a上的射影?什么叫

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论