




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 2 2椭圆的简单几何性质 1 2008 10 13 复习 1 椭圆的定义 到两定点f1 f2的距离之和为常数 大于 f1f2 的动点的轨迹叫做椭圆 2 椭圆的标准方程是 3 椭圆中a b c的关系是 a2 b2 c2 当焦点在x轴上时 当焦点在y轴上时 二 椭圆简单的几何性质 a x a b y b知椭圆落在x a y b组成的矩形中 1 范围 椭圆的对称性 2 对称性 从图形上看 椭圆关于x轴 y轴 原点对称 从方程上看 1 把x换成 x方程不变 图象关于y轴对称 2 把y换成 y方程不变 图象关于x轴对称 3 把x换成 x 同时把y换成 y方程不变 图象关于原点成中心对称 3 椭圆的顶点 令x 0 得y 说明椭圆与y轴的交点 令y 0 得x 说明椭圆与x轴的交点 顶点 椭圆与它的对称轴的四个交点 叫做椭圆的顶点 长轴 短轴 线段a1a2 b1b2分别叫做椭圆的长轴和短轴 a b分别叫做椭圆的长半轴长和短半轴长 根据前面所学有关知识画出下列图形 1 2 a1 b1 a2 b2 b2 a2 b1 a1 4 椭圆的离心率e 刻画椭圆扁平程度的量 离心率 椭圆的焦距与长轴长的比 叫做椭圆的离心率 1 离心率的取值范围 2 离心率对椭圆形状的影响 0 e 1 1 e越接近1 c就越接近a 从而b就越小 椭圆就越扁2 e越接近0 c就越接近0 从而b就越大 椭圆就越圆 3 e与a b的关系 思考 当e 0时 曲线是什么 当e 1时曲线又是什么 x a y b 关于x轴 y轴成轴对称 关于原点成中心对称 a 0 a 0 0 b 0 b c 0 c 0 长半轴长为a 短半轴长为b a b a2 b2 c2 x a y b 关于x轴 y轴成轴对称 关于原点成中心对称 a 0 a 0 0 b 0 b c 0 c 0 长半轴长为a 短半轴长为b a b a2 b2 c2 x b y a 同前 b 0 b 0 0 a 0 a 0 c 0 c 同前 同前 同前 例1已知椭圆方程为9x2 25y2 225 它的长轴长是 短轴长是 焦距是 离心率等于 焦点坐标是 顶点坐标是 外切矩形的面积等于 10 6 8 60 解题的关键 1 将椭圆方程转化为标准方程明确a b 2 确定焦点的位置和长轴的位置 练习 已知椭圆的离心率 求m的值及椭圆的长轴和短轴的长 焦点坐标 顶点坐标 练习求下列椭圆的长轴长 短轴长 焦点坐标 顶点坐标和离心率 1 x2 9y2 81 2 25x2 9y2 225 3 16x2 y2 25 4 4x2 5y2 1 练习 1 根据下列条件 求椭圆的标准方程 长轴长和短轴长分别为8和6 焦点在x轴上 长轴和短轴分别在y轴 x轴上 经过p 2 0 q 0 3 两点 一焦点坐标为 3 0 一顶点坐标为 0 5 两顶点坐标为 0 6 且经过点 5 4 焦距是12 离心率是0 6 焦点在x轴上 2 已知椭圆的一个焦点为f 6 0 点b c是短轴的两端点 fbc是等边三角形 求这个椭圆的标准方程 例3 1 椭圆的左焦点是两个顶点 如果f到直线ab的距离为 则椭圆的离心率e 2 设m为椭圆上一点 为椭圆的焦点 如果 求椭圆的离心率 小结 本节课我们学习了椭圆的几个简单几何性质 范围 对称性 顶点坐标 离心率等概念及其几何意义 了解了研究椭圆的几个基本量a b c e及顶点 焦点 对称中心及其相互之间的关系 这对我们解决椭圆中的相关问题有很大的帮助 给我们以后学习圆锥曲线其他的两种曲线扎实了基础 在解析几何的学习中 我们更多的是从方程的形式这个角度来挖掘题目中的隐含条件 需要我们认识并熟练掌握数与形的联系 在本节课中 我们运用了几何性质 待定系数法来求解椭圆方程 在解题过程中 准确体现了函数与方程以及分类讨论的数学思想 3 p为椭圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年苏州工艺美术职业技术学院长期招聘高层次人才笔试备考题库参考答案详解
- 应急值守人员安全培训课件
- 2025湖南省沅江市中考物理达标测试带答案详解(预热题)
- 2024年安全员考试考试综合练习及参考答案详解【培优A卷】
- 2025银行岗位综合提升测试卷审定版附答案详解
- 秋季腹泻护理中疼痛缓解方法
- 采购代理中介合同(标准版)
- 2024-2025学年广播电视编辑记者试题含答案详解【培优B卷】
- 2025年汽车行业芯片短缺应对策略与汽车租赁市场投资建议报告
- 2025年特色乡村旅游项目旅游品牌形象塑造评估报告
- 安徽省合肥市六校联考2025-2026年高三上学期开学考试语文试卷(含答案)
- 2025债权收购委托代理合同
- (标准)舞蹈班转让合同协议书
- T/CTRA 01-2020废轮胎/橡胶再生油
- 2025年网信知识测试题及答案
- 高中英语新课标3000词汇表(新高考)
- 【MOOC】《中国马克思主义与当代》(北京科技大学)中国大学MOOC慕课答案
- 鱼塘补偿协议书范文
- 印度白内障小切口手术学习笔记
- 卢春房副部长讲话《树立质量意识,强化风险控制,持续纵深推进铁
- 研究生新生入学教育
评论
0/150
提交评论