原位检测论文连续压缩载荷下木材力学性能及微观结构变.doc_第1页
原位检测论文连续压缩载荷下木材力学性能及微观结构变.doc_第2页
原位检测论文连续压缩载荷下木材力学性能及微观结构变.doc_第3页
原位检测论文连续压缩载荷下木材力学性能及微观结构变.doc_第4页
原位检测论文连续压缩载荷下木材力学性能及微观结构变.doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

原位检测论文:连续压缩载荷下木材力学性能及微观结构变化定量表征【中文摘要】木材与木质材料的力学性能在很大程度上取决于其内部结构特征。为了更好的了解和掌握木材力学性能与其微观结构的关系,本论文采用自主研发的原位检测平台,研究了不同条件下木材受连续压缩时力学性能及其微观结构的实时变化情况,并着重分析了两者之间的相互关系。本论文首先归纳了原位检测方法在木材组织力学水平上的应用,分析了现有原位检测技术存在的问题及可实现的解决方法;随后重点介绍了自主研发的原位检测平台的构架及实施方式、图像采集系统等重要部位的工作原理;并借助具体试验,综合分析了该平台可实现的技术特点;然后通过该原位检测平台,以人工林杉木(Cunninghamia lanceolata)小试样为研究对象,系统研究了不同生长轮早材在连续横纹径向压缩时的力学行为及其微观结构变化;并进一步研究了不同加载速度、温度和含水率条件下,早材在连续加载时的力学性能及其与内部微观结构变化的关系。本论文的主要研究结论如下:(1)自主研发的原位检测平台包括两个系统,一是加载系统,二是图像采集系统,两个系统通过时间参数并行统一。图像采集系统能在连续加载的过程中自动聚焦并实时拍摄木材变形的照片,并借助于测量与计算软件对照片进行定量分析,从而实现木材的力学性能及其微观结构变化的动态检测。(2)杉木各生长轮间早材横纹径向抗压屈服强度(c)和横纹径向抗压弹性模量(Ec)从心材到边材呈逐渐减小趋势。不同部位(心材、边心材交界和边材)间c与Ec存在显著的差异性。对三个部位(心材、边心材交界和边材)连续受压产生首次屈服永久变形(塑性变形)的微观结构位置进行定量研究结果表明:第7生长轮与第11生长轮出现首次屈服变形的位置一致,均在距被加载表面第15-20层早材细胞处(平均距离分别为643m和689m);而第17生长轮在距被加载表面第5-10层早材细胞处(平均距离为153m)产生首次屈服变形。不同生长轮间早材微观结构的不同影响其横纹抗压力学性能在径向方向上的变化。(3)在不同加载速度(1mm/min,10mm/min和50mm/min)条件下,早材产生首次屈服变形的位置与被加载表面之间平均距离分别为689m,166m和23m。不同加载速度下早材小试样的c与Ec均差异显著,与试样产生首次屈服变形的位置有关。低速加载下(1mm/min),木材内部最脆弱部位首先产生屈服变形,得到的c与Ec相对较小,平均值分别为3.16MPa和45.79MPa;较高加载速度下(10mm/min和50mm/min),木材内部非最脆弱部位首先产生屈服变形,得到的c与Ec相对较大,平均值分别为3.71MPa和56.04MPa,4.51MPa和75.53MPa。(4)在不同温度(-20OC、20OC、60oC、80OC和120OC)条件下,早材c与Ec的变化趋势一致。在负温度下(-20OC)得到c与Ec均比正温度下的c与Ec大。一般来说,随着温度的升高,c与Ec逐渐减小。同时,不同温度下c与Ec差异比较显著。较低温度(60oC)下与较高温度(80 oC)下,早材的破坏方式不同。温度60oC时,趋于刚性屈服;温度80OC时,趋于柔性屈服;不同温度(-20OC、20OC和60OC)下,出现首次屈服变形的位置相同,均为距被加载表面第17-20层早材细胞处(距被加载表面的平均距离分别为667m、689m和643m),表明在较低温度(60OC)范围内,温度的变化并未改变木材内部最脆弱部位的位置,但最脆弱部位木材的力学性能发生变化。(5)在不同含水率(绝干、气干与饱水状态)条件下,早材c与Ec差异均显著。c与Ec随着含水率增加呈逐渐减小的趋势。由绝干到气干状态,早材产生首次屈服变形的位置未发生变化,均在距被加载表面第17-20层早材细胞处(距被加载表面的平均距离分别为664m和689m);在饱水状态下,加载过程中压出的水分影响微观结构的拍摄和检测。在不同含水率条件下,木材产生首次屈服变形时的破坏方式不同。在绝干和气干条件下,趋于刚性屈服;而在饱水条件下,趋于柔性屈服。在绝干与气干条件下,含水率变化并未改变木材内部最脆弱部位的位置,但最脆弱部位木材的力学性能发生变化。综上所述,本研究通过自主研发的原位检测平台,实现了连续加载条件下木材微观结构变化的实时检测,并较好解释了不同条件下木材横纹径向压缩力学性能变化的解剖学原因,为连续加载条件下木材力学行为的有效检测和预测提供了技术基础和理论依据。【英文摘要】Mechanical properties of wood and wood products are highly depended upon the interior structural features. Based on this theory, this paper introduced research methods and tendency of testing on wood mechanical properties, then introduced the applying of in-situ inspection on wood tissue mechanical level and analyzed the existing and unsolved problems of the present in-situ inspection system. A self-developed in-situ inspection platform had been developed, and then the structures of the platform and its implement methods were descried in detail. The mechanism of auto-focus photo-shooting system was given in the paper. By means of wood mechanical tests, detailed descriptions of the platform on how to achieve the variable technical characteristics had been obtained, and technical advantages of this platform were comprehensive analyzed.By virtue of the self-developed in-situ inspection system and earlywood simples in each growth ring of Chinese fir, wood mechanical behavior variations under continuous compressive loading and auto-focused in-situ inspection on microstructure characteristics of wood deformation had been systematically analyzed. Meanwhile, through the change of outer environment conditions, i.e. loading rate, temperature and moisture conditions, variations on mechanical properties in these situations were obtained, and quantitative analysis on microstructure variances were investigated with the help of the measuring and calculating software. The main conclusions of the paper are as follows:(1) The in-situ inspection system can be divided into two parts, one part is the loading system, and the other part is the picture-collection system. The two parts can be combined by the parameter of time. The picture collection system can automatically take photos of materialssurface deformation during the loading process. Meanwhile, by means of the quantitative calculation and measuring on the photos, the system can directly and precisely achieve the simulations of wood mechanical properties. (2) By using early wood samples in each growth ring, the result that yield strength and modulus of elasticity under radial compression are decreasing from heartwood to sapwood. Significant variations were observed among mechanical properties of different parts, i.e. heartwood, transition wood and sapwood. The in-situ inspection on wood micro-structural deformation and quantitative analysis results showed that the first yield positions of both heartwood and transition wood occurred at 15-20 cell layer of earlywood (643m and 689m from the surface of loading compression, respectively), while the first yield position of sapwood occurred at 5-10 cell layer of earlywood (153m from the surface of loading compression).(3) The yield strength and modulus of elasticity at different loading rates are relevant to the first yield position. Loading rates of 1mm/min, 10mm/min and 50mm/min was adopted respectively for mechanical testing of typical softwood of Chinese fir (Cunninghamia lanceolata). The results indicated that the variations of wood mechanical performance at different loading rates were generated from the different position of the first yield point (689m, 166m and 23m, respectively); the in-situ inspecting system could accurately characterize the variations of microstructure deformation. Furthermore, the microstructure characteristics could be used to explain mechanical behavior of wood suffered from different loading rates.(4) Mechanical properties, i.e. yield strength and modulus of elasticity, have the same tendency with the variation of temperature conditions. Mechanical properties at negative temperature are higher than that of at positive temperatures. Generally speaking, yield strength and modulus of elasticity are decreasing with the increase of temperature. The fracture behaviors are different at relatively low (60OC)and high temperature(s80OC).At relatively low temperatures (including -20OC,20OC and 60OC), the fracture behavior is tend to in a rigid way; While at relatively high temperatures (including 80OC and 120OC), the fracture behavior is tend to in a flexible way. At different temperatures(-20OC,20OC and 60OC), the first yield position is similar, which occurred at 15-20 cell layer of the earlywood (667m,689m and 643m from the surface of loading compression, respectively), which inferred that the temperature had not affect the most vulnerable area in the sample.(5) The yield strength and modulus of elasticity are variable at different moisture conditions. Generally, the yield strength and modulus of elasticity are decreasing from fully dry to air-dry and then to fiber saturate condition. The first yield positions were similar at air-dry and full-dry moisture conditions, which occurred at 15-20 cell layer of the earlywood (664m and 689m from the surface of loading compression, respectively); while at firber saturate moisture condition, the free water in cell walls or cavities was compressed out which made it impossible to see the fracture surface.The fracture behaviors are different between the relatively low (fully-dry and air-dry)and high moisture conditions(fiber saturate).At relatively low moisture conditions, the fracture behavior is tend to be in a rigid way; While at relatively high moisture condition, the fracture behavior is tend to be in a flexible way.Above all, the self-developed inspecting method can help us understand and master the microstructure characteristics of wood deformation under continuous compressive loading, and can explain the variations of mechanical properties during continuous compression. The system can realize the effective anticipations of wood mechanical properties suffered from various compression conditions, and can quantitatively analyze the variance of wood microstructure characteristics.【关键词】原位检测 微观结构 力学性能 加载速度 温度 含水率【英文关键词】in-situ inspection mechanical properties micro-structure characteristics loading rate temperature moisture content【目录】连续压缩载荷下木材力学性能及微观结构变化定量表征摘要5-7Abstract7-9第一章 绪论16-251.1 引言16-171.2 原位检测方法在木材组织力学水平上的应用17-221.2.1 组织力学水平上的研究手段19-201.2.2 微观结构检测技术在木材组织力学水平上的应用进展20-221.3 研究的目的和意义22-251.3.1 研究目的与项目来源22-231.3.2 研究的主要内容与技术路线23-25第二章 原位检测平台的建立25-422.1 原位检测平台的组成25-262.2 原位检测平台装置26-272.2.1 加载装置26-272.2.2 图像采集装置272.3 图像采集系统的实现27-402.3.1 图像的边缘和清晰度27-282.3.2 自动聚焦工作原理28-292.3.3 自动聚焦工作过程29-302.3.4 原位检测系统实物图片30-312.3.5 连续加载条件下木材微观结构变化检测方法31-352.3.6 弹性阶段应力应变曲线的模拟方法35-402.3.7 本原位检测平台实现的技术步骤402.4 本章小结40-42第三章 连续压缩载荷下木材横纹抗压力学性能径向变化及其微观结构定量表征42-563.1 绪言42-433.2 材料与实验方法43-463.2.1 试验样品准备43-453.2.2 试验方法及试验研究45-463.3 结果与讨论46-553.3.1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论