




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导数阶段检测一、填空题1当函数yx2x取极小值时,x_。2函数f(x)x2ln x的最小值为_。3已知函数f(x)x3ax2bxa27a在x1处取得极大值10,则的值为_。4已知yf(x)是奇函数,当x(0,2)时,f(x)ln xax,当x(2,0)时,f(x)的最小值为1,则a的值等于_。5如果函数yf(x)的导函数的图象如图所示,给出下列判断:函数yf(x)在区间内单调递增;函数yf(x)在区间内单调递减;函数yf(x)在区间内单调递增;当x2时,函数yf(x)有极小值;当x时,函数yf(x)有极大值则上述判断中正确的是_。6函数f(x)x23x4在0,2上的最小值是_7已知函数yf(x)x33ax23bxc在x2处有极值,其图象在x1处的切线平行于直线6x2y50,则f(x)的极大值与极小值之差为_8函数f(x)x33axb(a0)的极大值为6,极小值为2,则f(x)的单调递减区间是_9已知f(x)x36x29xabc,ab0; f(0)f(1)0; f(0)f(3)0)上的最小值17已知函数f(x)aln xax3(aR)(1)求函数f(x)的单调区间;(2)若函数yf(x)的图象在点(2,f(2)处的切线的倾斜角为45,对于任意的t1,2,函数g(x)x3x2在区间(t,3)上总不是单调函数,求m的取值范围18已知函数f(x)ax2ex(aR,e为自然对数的底数),f(x)是f(x)的导函数(1)解关于x的不等式:f(x)f(x);(2)若f(x)有两个极值点x1,x2,求实数a的取值范围19已知函数 f(x)(4x24axa2),其中 a0,f(x)为(,)上的增函数,所以函数f(x)无极值当a0时,令f(x)0,得exa,即xln a.x(,ln a)时,f(x)0,所以f(x)在(,ln a)上单调递减,在(ln a,)上单调递增,故f(x)在xln a处取得极小值,且极小值为f(ln a)ln a,无极大值综上,当a0时,函数f(x)无极值;当a0时,f(x)在xln a处取得极小值ln a,无极大值16、解:(1)当a5时,g(x)(x25x3)ex,g(1)e.又g(x)(x23x2)ex,故切线的斜率为g(1)4e.所以切线方程为:ye4e(x1),即y4ex3e.(2)函数f(x)的定义域为(0,),f(x)ln x1,当x变化时,f(x),f(x)的变化情况如下表:xf(x)0f(x)单调递减极小值单调递增当t时,在区间上f(x)为增函数,所以f(x)minf(t)tln t.当0t0.当a0时,无解;当a0时,解集为x|x2;当a0时,解集为x|0x2(2)设g(x)f(x)2axex,则x1,x2是方程g(x)0的两个根 g(x)2aex,当a0时,g(x)0时,由g(x)0,得xln 2a,当x(,ln 2a)时,g(x)0,g(x)单调递增,当x(ln 2a,)时,g(x)0时,方程g(x)0才有两个根,g(x)maxg(ln 2a)2aln 2a2a0,得a. 故实数a的取值范围是.19、解:(1)当a4时,f(x)(4x216x16) ,其中x0.则f(x).由f(x)0得0x2. 故函数f(x)的单调递增区间为和(2,)(2)f(x),a0, 由f(x)0得x或x.当x时,f(x)单调递增;当x,时,f(x)单调递减;当x时,f(x)单调递增 易知f(x)(2xa)20,且f0.当1时,即2a0时,f(x)在1,4上的最小值为f(1),由f(1)44aa28,得a22,均不符合题意当14时,即8a4时,即a8时,f(x)在1,4上的最小值可能在x1或x4处取得,而f(1)8,由f(4)2(6416aa2)8得a10或a6(舍去),当a10时,f(x)在(1,4)上单调递减,f(x)在1,4上的最小值为f(4)8,符合题意 综上有,a10.20、解:(1)当m2时,f(x)ex(x32x22x2),其定义域为(,)则f(x)ex(x32x22x2)ex(3x24x2)xex(x2x6)(x3)x(x2)ex,当x(,3)或x(0,2)时,f(x)0; f(3)f(0)f(2)0,f(x)在(,3)上单调递减,在(3,0)上单调递增;在(0,2)上单调递减,在(2,)上单调递增,当x3或x2时,f(x)取得极小值;当x0时,f(x)取得极大值,f(x)极小值f(3)37e3,f(x)极小值f(2)2e2,f(x)极大值f(0)2.(2)f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第22章 二次函数 单元测试(含答案)人教版(2024)数学九年级上 册
- 2025年中高端衡器合作协议书
- 校长招考试题及答案
- 2025年湖南省长沙市雅礼外国语学校中考数学模拟试卷(3月份)(含答案)
- 工程造价信息题库及答案
- 2025年心理与健康考试题及答案
- 2025年阜阳中考试卷及详细答案
- 2025年宁夏二建考试试题及答案
- 2025年分类考试笔试题目及答案
- 慢性伤口概述
- 人工智能对会计信息披露的挑战与机遇
- 【人教版】二年级上册《道德与法治》全册教案
- 《应用文写作》中职全套教学课件
- 小学英语开学第一课-课件
- 《第1课 身边的数据》参考课件3
- 《塑料门窗工程技术规程》JGJ103-2008
- OGSM战略规划框架:实现企业目标的系统化方法论
- 污水处理中回收磷资源的研究
- 第2课《树立科学的世界观》第1框《世界的物质性》-【中职专用】《哲学与人生》同步课堂课件
- 一年级看图写话专项练习及范文20篇(可下载打印)
- (正式版)JBT 9229-2024 剪叉式升降工作平台
评论
0/150
提交评论