



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1. 知识结构2. 重点、难点分析重点:圆内接四边形的性质定理它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法难点:定理的灵活运用使用性质定理时应注意观察图形、分析图形,不要弄错四边形的外角和它的内对角的相互对应位置3. 教法建议本节内容需要一个课时(1)教师的重点是为学生创设一个探究问题的情境(参看教学设计示例),组织学生自主观察、分析和探究;(2)在教学中以“发现证明应用”为主线,以“特殊一般”的探究方法,引导学生发现与证明的思想方法一、教学目标:(一)知识目标(1)了解圆内接多边形和多边形外接圆的概念;(2)掌握圆内接四边形的概念及其性质定理;(3)熟练运用圆内接四边形的性质进行计算和证明(二)能力目标(1)通过圆的特殊内接四边形到圆的一般内接四边形的性质的探究,培养学生观察、分析、概括的能力;(2)通过定理的证明探讨过程,促进学生的发散思维;(3)通过定理的应用,进一步提高学生的应用能力和思维能力(三)情感目标(1)充分发挥学生的主体作用,激发学生的探究的热情;(2)渗透教学内容中普遍存在的相互联系、相互转化的观点二、教学重点和难点:重点:圆内接四边形的性质定理难点:定理的灵活运用三、教学过程设计(一)基本概念如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆如图中的四边形ABCD叫做O的内接四边形,而O叫做四边形ABCD的外接圆(二)创设研究情境问题:一般的圆内接四边形具有什么性质?研究:圆的特殊内接四边形(矩形、正方形、等腰梯形)教师组织、引导学生研究1、边的性质:(1)矩形:对边相等,对边平行(2)正方形:对边相等,对边平行,邻边相等(3)等腰梯形:两腰相等,有一组对边平行归纳:圆内接四边形的边之间看不出存在什么公同的性质2、角的关系 猜想:圆内接四边形的对角互补(三)证明猜想教师引导学生证明(参看思路)思路1:在矩形中,外接圆心即为它的对角线的中点,A与B均为平角BOD的一半,在一般的圆内接四边形中,只要把圆心O与一组对顶点B、D分别相连,能得到什么结果呢?A= ,C=A+C=思路2:在正方形中,外接圆心即为它的对角线的交点把圆心与各顶点相连,与各边所成的角均方45的角在一般的圆内接四边形中,把圆心与各顶点相连,能得到什么结果呢?这时有2(+)=360所以 +=180而 +=A,+=C,A+C=180,可得,圆内接四边形的对角互补(四)性质及应用定理:圆的内接四边形的对角互补,并且任意一个外角等于它的内对角(对A层学生应知,逆定理成立, 4点共圆)例 已知:如图,O1与O2相交于A、B两点,经过A的直线与O1交于点C,与O2交于点D过B的直线与O1交于点E,与O2交于点F求证:CEDF(分析与证明学生自主完成)说明:连结AB这是一种常见的引辅助线的方法对于这道例题,连结AB以后,可以构造出两个圆内接四边形,然后利用圆内接四边形的关于角的性质解决教师在课堂教学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年纺织品设计师证书考试培养的能力试题及答案
- 初二英语提高试题及答案
- 2024年纺织工程师市场竞争策略试题及答案
- 广告设计的理念与方法论研究 试题及答案
- 幻想情景测试题及答案
- 2024年纺织品检验员备考攻略试题及答案
- 2024年纺织工程师考试试题及答案
- 2024年纺织品设计师证书考试中成功的关键要素试题及答案
- 本科国际公法试题及答案
- 农业区位因素试题及答案
- 大学计算机基础实验教程(高守平第2版)
- 2023年福建三明市初中毕业班数学质量检测卷(附答案)
- 现金盘点表完整版
- 金蝶固定资产管理系统
- LY/T 2457-2015西南桦培育技术规程
- GB/T 40998-2021变性淀粉中羟丙基含量的测定分光光度法
- GB/T 25840-2010规定电气设备部件(特别是接线端子)允许温升的导则
- 军标类型整理文档
- FZ/T 52019-2011莱赛尔短纤维
- 止血包扎(课件)
- 2022年湖南高二学业水平合格考试政治试卷真题及答案详解
评论
0/150
提交评论