




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
狗 公鸡和狐狸狗与公鸡结交为朋友 他们一同赶路 到了晚上 公鸡一跃跳到树上 在树枝上栖息 狗就在下面树洞里过夜 黎明到来时 公鸡像往常一样啼叫起来 有只狐狸听见鸡叫 想要吃鸡肉 便跑来站在下 恭敬地请鸡下来 并说 多么美的嗓音啊 太悦耳动听了 我真想拥抱你 快下来 让我们一起唱支小夜曲吧 鸡回答说 请你去叫醒树洞里的那个看门守夜的 他一开门 我就可以下来 狐狸立刻去叫门 狗突然跳了起来 把他咬住撕碎了 这故事说明 聪明的人临危不乱 巧妙而轻易地击败敌人 可化为一元一次方程的分式方程 分式方程及其解法 复习提问 1 什么叫做方程 什么是一元一次方程 什么是方程的解 2 解一元一次方程的基本方法和步骤是么 3 分式有意义的条件是什么 4 分式的基本性质是怎样的 轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同 已知水流的速度是3千米 时 求轮船在静水中的速度 解 设轮船在静水中的速度为x千米 时 根据题意 得 这个方程有何特点 情境导入 分式方程的主要特征 1 含有分式 2 分母中含有未知数 方程中含有分式 并且分母中含有未知数 像这样的方程叫做分式方程 你还能举出一个分式方程吗 分式方程的定义 辨析 判断下列各式哪个是分式方程 考考你 下列方程哪些是分式方程 做一做 1 思考 分式方程怎样解呢 为了解决这个问题 请同学们先思考并回答以下问题 1 回顾一下一元一次方程时是怎么去分母的 从中能否得到一点启发 2 如何去掉分式方程的分母把它转化为整式方程呢 3 去分母的依据是什么 分式方程的解法 试一试 解方程解 方程两边同乘以 x 3 x 3 约去分母 得80 x 3 60 x 3 解这个整式方程 得x 21 所以轮船在静水中的速度为21千米 时 分式方程的解法 思考 这类方程还可以利用什么方法去分母 利用比例的基本性质 交叉相乘 概括 上述解分式方程的过程 实质上是将方程的两边乘以同一个整式 约去分母 把分式方程转化为整式方程来解 所乘的整式通常取方程中出现的各分式的最简公分母 分式方程的解法 所以 解方式方程的关键是去分母 化为整式方程 例1解方程 解 方程两边同乘以 x2 1 约去分母 得x 1 2 解这个整式方程 得x 1 事实上 当x 1时 原分式方程左边和右边的分母 x 1 与 x2 1 都是0 方程中出现的两个分式都没有意义 因此 x 1不是原分式方程的根 应当舍去 所以原分式方程无解 例题讲解 为什么出现这种情况 在将分式方程变形为整式方程时 方程两边同乘以一个含未知数的整式 并约去了分母 有时可能产生不适合原分式方程的解 或根 这种根通常称为增根 因此 在解分式方程时必须进行检验 那么 可能产生 增根 的原因在哪里呢 探究分式方程产生增根的原因 对于原分式方程的解来说 必须要求使方程中各分式的分母的值均不为零 但变形后得到的整式方程则没有这个要求 如果所得整式方程的某个根 使原分式方程中至少有一个分式的分母的值为零 也就是说使变形时所乘的整式 各分式的最简公分母 的值为零 它就不适合原方程 即是原分式方程的增根 探究分式方程产生增根的原因 解分式方程进行检验的关键是看所求得的整式方程的根是否使原分式方程中的分式的分母为零 有时为了简便起见 也可将它代入所乘的整式 即最简公分母 看它的值是否为零 如果为零 即为增根 如例1中的x 1 代入x2 1 0 可知x 1是原分式方程的增根 有了上面的经验 我们再来完整地解例1中的分式方程 探究分式方程的验根方法 例1解方程 解 方程两边同乘以 x2 1 约去分母 得x 1 2解得 x 1检验 把x 1代入 x 1是原分式方程的增根 原分式方程无解 例题讲解 注意格式哟 例2解方程 解 方程两边同乘以 检验 把x 5代入x 4 得x 4 0 x 5是原分式方程的解 例题讲解 得 试一试 2 解 方程两边同乘以得 检验 把x 2代入x2 4 得x2 4 0 x 2是原分式方程的增根 例题讲解 去括号 得 整理 得 8x 16 原分式方程无解 一定要检验哟 例3解方程 解 方程两边分别通分 经检验是原分式方程的根 是原分式方程的解 解得 例题讲解 强调 检验根的另一种写法 当a为何值时 方程有增根 解 去分母 方程两边同乘以 解得 方程有增根 当 时 原方程产生增根 拓展应用 及时训练 1 若方程有增根 求m的值 分析 去分母得 6 m x 1 x 1 x 1 若方程有增根 那么 x 1 x 1 0即 x 1或x 1 将x 1代入去分母后的整式方程可知 x 1不是整式方程的解 所以x 1不是原分式方程的增根 所以当x 1时 m 3 2 解关于的分式方程 解 去分母 方程两边同乘以 移项 得 经检验 是原分式方程的根 x ab原分式方程的解 做一做 1 判断 做一做 2 解方程 作业 3 解方程 4 解关于的分式方程 5 已知分式方程无解 求的值 做一做 6 已知 为何值时 分式方程有根 做一做 1 什么是分式方程 举例说明 2 解分式方程的一般步骤 a 在方程的两边都乘以最简公分母 约去分母 化为整式方程 b 解这个整式方程 c 检验 即把整式方程的根代入最简公分母 看结果是否等于零 若最简公分母不等于零 则是原方程的根 否则就是原方程的增根 必
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度航空零部件进口合同书
- 2025年度智能家居公寓房产代理合作协议
- 2025版桥梁清包工合同工程监理与质量监督合同
- 2025地产公司房地产项目风险评估与风险管理合同
- 2025版农业信息化农资采购服务合同
- 2025版公关活动策划试用员工劳务合同范本
- 2025版人民防空工程租赁合同范本及应急保障协议
- 2025年全新空调租赁与能源管理服务合同下载
- 2025版石膏板企业战略合作伙伴销售与研发合同
- 2025版农产品电商代理销售合同书
- 用友U8全产品功能介绍
- 医院突发公共卫生事件应急预案
- 建筑工程安全生产责任书
- GMAT数学概念单词
- 三基考试题库3
- 化工安全与环保PPT
- 流体力学的课件
- 《城市管理综合执法问题研究国内外文献综述》4800字
- 新录用公务员取消录用审批表
- 消控中心值班检查记录表
- 电梯周期日常维护保养项目表
评论
0/150
提交评论