




免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学教室* 李雄老师(版权所有)考压轴题分类专题四抛物线中的直角三角形基本题型:已知,抛物线,点在抛物线上(或坐标轴上,或抛物线的对称轴上),若为直角三角形,求点坐标。分两大类进行讨论:(1)为斜边时(即):点在以为直径的圆周上。利用中点公式求出的中点;利用圆的一般方程列出的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点坐标。(2)为直角边时,分两类讨论:以为直角时(即):以为直角时(即):利用两点的斜率公式求出,因为两直线垂直斜率乘积为,进而求出(或)的斜率;进而求出(或)的解析式;将(或)的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点坐标。所需知识点:一、 两点之间距离公式:已知两点,则由勾股定理可得:。二、 圆的方程:点在M上,M中的圆心M为,半径为R。则,得到方程:。P在的图象上,即为M的方程。三、 中点公式:已知两点,则线段PQ的中点M为。四、 任意两点的斜率公式:已知两点,则直线PQ的斜率: 。典型例题:例一、如图,抛物线,与轴交于点,且(I)求抛物线的解析式;(II)探究坐标轴上是否存在点,使得以点为顶点的三角形为直角三角形?若存在,求出点坐标,若不存在,请说明理由; (III)直线交轴于点,为抛物线顶点若,的值例2、 如图,一次函数图像经过点A(1,0),交y轴于点B,C为y轴负半轴上一点,且BC=2OB,过A、C两点的抛物线交直线AB于点D,且CDx轴(1)求这条抛物线的解析式;(2) 观察图像,写出使一次函数值小于二次函数值时x的取值范围;(3) 在题中的抛物线上是否存在一点M,使得为直角?若存在,求出点M的坐标,若不存在,请说明理由例3、在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示,抛物线经过点B。(1)求点B的坐标; (2)求抛物线的解析式; (3)在抛物线上是否还存在点P(点B除外),使ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由。同步训练:1、如图所示,在平面直角坐标系中二次函数图象的顶点为P,与x轴交点为 A、B,与y轴交点为C连结BP并延长交y轴于点D。 (1)写出点P的坐标; (2)连结AP,如果APB为等腰直角三角形,求a的值及点C、D的坐标; (3)在(2)的条件下,连结BC、AC、AD,点E(0,b)在线段CD(端点C、D除外)上,将BCD绕点E逆时针方向旋转90,得到一个新三角形设该三角形与ACD重叠部分的面积为S,根据不同情况,分别用含b的代数式表示S选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b为何值时,重叠部分的面积最大?写出最大值2(福建2009年宁德市)、如图,已知抛物线C1:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1(1)求P点坐标及a的值;(4分)(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(4分)(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180后得到抛物线C4抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标(5分)yxAOBPN图2C1C4QEF图(2)yxAOBPM图1C1C2C3图(1)yxAOBPM图(1)C1C2C3HG 3、如图14(1),抛物线与x轴交于A、B两点,与y轴交于点C(0,)图14(2)、图14(3)为解答备用图(1),点A的坐标为,点B的坐标为;(2)设抛物线的顶点为M,求四边形ABMC的面积;(3)在x轴下方的抛物线上是否存在一点D,使四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备联锁安全管理制度
- 设计主管绩效管理制度
- 设计公司装修管理制度
- 评估人员岗位管理制度
- 诊所打针日常管理制度
- 诊所药品追溯管理制度
- 试述护理文件管理制度
- 财政公司宿舍管理制度
- 货物公司安全管理制度
- 货运现场安全管理制度
- GB/T 2965-2023钛及钛合金棒材
- 急性缺血性脑卒中静脉溶栓治疗护理新进展
- 六西格玛(6Sigma)详解及实际案例分析
- 建筑安装工程一切险宋
- 装配电工技能培训课件
- (幼儿学前教育)43 保育工作见实习观察记录表
- 2017版银皮书(中英文完整版)FIDIC设计采购施工交钥匙项目合同条件
- 养生馆年会主持稿范文模板
- GMP生产管理知识
- YY/T 0799-2010医用气体低压软管组件
- GB/T 9768-2017轮胎使用与保养规程
评论
0/150
提交评论