第一部分数学Ⅱ附加题部分专题Ⅱ-5专题验收评估.doc_第1页
第一部分数学Ⅱ附加题部分专题Ⅱ-5专题验收评估.doc_第2页
第一部分数学Ⅱ附加题部分专题Ⅱ-5专题验收评估.doc_第3页
第一部分数学Ⅱ附加题部分专题Ⅱ-5专题验收评估.doc_第4页
第一部分数学Ⅱ附加题部分专题Ⅱ-5专题验收评估.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1(2011江苏高考)如图,在正四棱柱ABCDA1B1C1D1中,AA12,AB1,点N是BC的中点,点M在CC1上设二面角A1DNM的大小为.(1)当90时,求AM的长;(2)当cos时,求CM的长解:建立如图所示的空间直角坐标系Dxyz.设CMt(0t2),则各点的坐标为A(1,0,0),A1(1,0,2),N(,1,0),M(0,1,t)所以,(1,1,t),(0,1,t),(1,0,2)设平面DMN的法向量为n1(x1,y1,z1),则n10,n10.即x12y10,y1tz10.令z11,则y1t,x12t.所以n1(2t,t,1)是平面DMN的一个法向量设平面A1DN的法向量为n2(x2,y2,z2),则n20,n20.即x22z20,x22y20.令z21,则x22,y21.所以n2(2,1,1)是平面A1DN的一个法向量从而n1n25t1.(1)因为90,所以n1n25t10,解得t.从而M(0,1,)所以AM .(2)因为|n1|,|n2|,所以cosn1,n2 .因为n1,n2或,所以|,解得t0或t.根据图形和(1)的结论可知t,从而CM的长为.2.在正方体ABCDA1B1C1D1中,O是AC的中点,E是线段D1O上一点,且D1EEO.(1)若1,求异面直线DE与CD1所成角的余弦值;(2)若平面CDE平面CD1O,求的值解:(1)不妨设正方体的棱长为1,以,为单位正交基底建立如图所示的空间直角坐标系Dxyz.则A(1,0,0),O,C(0,1,0),D1(0,0,1),E,于是,(0,1,1)由cos,.所以异面直线AE与CD1所成角的余弦值为.(2)设平面CD1O的向量为m(x1,y1,z1),由m0,m0,得取x11,得y1z11,即m(1,1,1)由D1EEO,则E,.又设平面CDE的法向量为n(x2,y2,z2),由n0,n0.得取x22,得z2,即n(2,0,)因为平面CDE平面CD1O,所以mn0,得2.3(2013重庆高考)如图,四棱锥PABCD中,PA底面ABCD,BCCD2,AC4,ACBACD,F为PC的中点,AFPB.(1)求PA的长;(2)求二面角BAFD的正弦值解:(1)如图,连接BD交AC于O,因为BCCD,即BCD为等腰三角形,又AC平分BCD,故ACBD.以O为坐标原点,的方向分别为x轴,y轴,z轴的正方向,建立空间直角坐标系Oxyz,则OCCDcos 1.而AC4,得AOACOC3.又ODCDsin,故A(0,3,0),B(,0,0),C(0,1,0),D(,0,0)因PA底面ABCD,可设P(0,3,z)由F为PC边中点,知F.又,(,3,z),AFPB,故0,即60,z2(舍去2),所以|2.(2)由(1)知(,3,0),(,3,0),(0,2,)设平面FAD的法向量为n1(x1,y1,z1),平面FAB的法向量为n2(x2,y2,z2),由n10,n10,得因此可取n1(3,2)由n20,n20,得故可取n2(3,2)从而法向量n1,n2的夹角的余弦值为cosn1,n2.故二面角BAFD的正弦值为.4(2013天津高考)如图, 四棱柱ABCDA1B1C1D1中, 侧棱A1A底面ABCD,AB/DC,ABAD,ADCD1,AA1AB2,E为棱AA1的中点(1)证明:B1C1CE; (2)求二面角B1CEC1的正弦值(3)设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长解:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0)(1)证明:易得(1,0,1),(1,1,1),于是0,所以B1C1CE.(2) (1,2,1)设平面B1CE的法向量m(x,y,z),则即消去x,得y2z0,不妨令z1,可得一个法向量为m(3,2,1)由(1)知,B1C1CE,又CC1B1C1,可得B1C1平面CEC1,故(1,0,1)为平面CEC1的一个法向量于是cosm,从而sin m,.所以二面角B1CEC1的正弦值为.(3) (0,1,0),(1,1,1)设(,),01,有(,1,)可取(0,0,2)为平面ADD1A1的一个法向量设为直线AM与平面ADD1A1所成的角,则sin |cos,|.于是,解得,所以AM.5(2013武汉市武昌模拟)如图,在四棱锥SABCD中,底面ABCD是直角梯形,侧棱SA底面ABCD,AB垂直于AD和BC,SAABBC2,AD1.M是棱SB的中点(1)求平面SCD与平面SAB所成二面角的余弦值;(2)设点N是直线CD上的动点,MN与平面SAB所成的角为,求sin 的最大值解:(1)以点A为原点建立如图所示的空间直角坐标系,则A(0,0,0),B(0,2,0),C(2,2,0),D(1,0,0),S(0,0,2),M(0,1,1)(1,0,2),(1,2,0)设平面SCD的法向量是n(x,y,z),则即令z1,则x2,y1,于是n(2,1,1)易知平面SAB的一个法向量为n1(1,0,0)设平面SCD与平面SAB所成的二面角为,则|cos |,即cos .平面SCD与平面SAB所成二面角的余弦值为.(2)设N(x,2x2,0)(x1,2),则(x,2x3,1)又平面SAB的一个法向量为n1(1,0,0),sin .当,即x时,(sin )max.6.(2013河北衡水二模)如图,在四棱锥PABCD中,侧面PAD底面ABCD,侧棱PAPD,PAPD,底面ABCD为直角梯形,其中BCAD,ABAD,ABBC1,O为AD中点(1)求直线PB与平面POC所成角的余弦值;(2)求B点到平面PCD的距离;(3)线段PD上是否存在一点Q,使得二面角QACD的余弦值为?若存在,求出的值;若不存在,请说明理由解:(1)在PAD中,PAPD,O为AD中点,所以POAD.又侧面PAD底面ABCD,平面PAD平面ABCDAD,PO平面PAD,所以PO平面ABCD.又在直角梯形ABCD中,连接OC,易得OCAD,所以以O为坐标原点,OC,OD,OP所在直线分别为x,y,z轴建立空间直角坐标系,则P(0,0,1),A(0,1,0),B(1,1,0),C(1,0,0),D(0,1,0),(1,1,1),易证OA平面POC,(0,1,0)是平面POC的法向量,cos,.直线PB与平面POC所成角的余弦值为.(2)(0,1,1),(1,0,1)设平面PDC的一个法向量为u(x,y,z),则取z1,得u(1,1,1)B点到平面PCD的距离为d.(3)假设存在一点Q,则设 (01)(0,1,1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论