关于统计查询的优化.doc_第1页
关于统计查询的优化.doc_第2页
关于统计查询的优化.doc_第3页
关于统计查询的优化.doc_第4页
关于统计查询的优化.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

各位:最近在优化肿瘤系统的一个查询统计的时候碰到一个性能问题。具体的统计要求如下:相信大家在以往的工作中也碰到过类似的的统计。根据我们平常的经验做法,我们一般会把统计SQL携程类似的形式:select g.icd_group, g.group_name, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG 3 and IS_DELETE = 0 and t.PRESENT_RESIDENCE like 4401%) as total, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG months_BETWEEN(t.diagnose_date, t.birthday) and IS_DELETE = 0) as a0, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG 3 and t.PRESENT_RESIDENCE like 4401% and 1 * 12 months_BETWEEN(t.diagnose_date, t.birthday) and IS_DELETE = 0) as a0_5, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG months_BETWEEN(t.diagnose_date, t.birthday) and 5 * 12 = months_BETWEEN(t.diagnose_date, t.birthday) and IS_DELETE = 0) as a5_10, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG months_BETWEEN(t.diagnose_date, t.birthday) and 10 * 12 = months_BETWEEN(t.diagnose_date, t.birthday) and IS_DELETE = 0) as a10_15, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG months_BETWEEN(t.diagnose_date, t.birthday) and 15 * 12 = months_BETWEEN(t.diagnose_date, t.birthday) and IS_DELETE = 0) as a15_20, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG months_BETWEEN(t.diagnose_date, t.birthday) and 20 * 12 = months_BETWEEN(t.diagnose_date, t.birthday) and IS_DELETE = 0) as a20_25, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG months_BETWEEN(t.diagnose_date, t.birthday) and 25 * 12 = months_BETWEEN(t.diagnose_date, t.birthday) and IS_DELETE = 0) as a25_30, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG months_BETWEEN(t.diagnose_date, t.birthday) and 30 * 12 = months_BETWEEN(t.diagnose_date, t.birthday) and IS_DELETE = 0) as a30_35, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG months_BETWEEN(t.diagnose_date, t.birthday) and 35 * 12 = months_BETWEEN(t.diagnose_date, t.birthday) and IS_DELETE = 0) as a35_40, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG months_BETWEEN(t.diagnose_date, t.birthday) and 40 * 12 = months_BETWEEN(t.diagnose_date, t.birthday) and IS_DELETE = 0) as a40_45, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG months_BETWEEN(t.diagnose_date, t.birthday) and 45 * 12 = months_BETWEEN(t.diagnose_date, t.birthday) and IS_DELETE = 0) as a45_50, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG months_BETWEEN(t.diagnose_date, t.birthday) and 50 * 12 = months_BETWEEN(t.diagnose_date, t.birthday) and IS_DELETE = 0) as a50_55, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG months_BETWEEN(t.diagnose_date, t.birthday) and 55 * 12 = months_BETWEEN(t.diagnose_date, t.birthday) and IS_DELETE = 0) as a55_60, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG months_BETWEEN(t.diagnose_date, t.birthday) and 60 * 12 = months_BETWEEN(t.diagnose_date, t.birthday) and IS_DELETE = 0) as a60_65, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG months_BETWEEN(t.diagnose_date, t.birthday) and 65 * 12 = months_BETWEEN(t.diagnose_date, t.birthday) and IS_DELETE = 0) as a65_70, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG months_BETWEEN(t.diagnose_date, t.birthday) and 70 * 12 = months_BETWEEN(t.diagnose_date, t.birthday) and IS_DELETE = 0) as a70_75, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG months_BETWEENdiagnose_date(t., t.birthday) and 75 * 12 = months_BETWEEN(t.diagnose_date, t.birthday) and IS_DELETE = 0) as a75_80, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG months_BETWEEN(t.diagnose_date, t.birthday) and 80 * 12 = months_BETWEEN(t.diagnose_date, t.birthday) and IS_DELETE = 0) as a80_85, (select count(*) from report t where t.INTERVIEW_DISTRIBUTE_STATE != 5 and t.icd_group like g.icd_group | % and t.IS_PASS_REVIEW = 2 and t.REPEATED_DISPOSE_FLAG 3 and t.PRESENT_RESIDENCE like 4401% and 85 * 12 = months_BETWEEN(t.diagnose_date, t.birthday) and IS_DELETE = 0) as a85_ from dict_icd_group g order by g.sn但是,这种统计方法在处理肿瘤系统十万多的数据量的情况下性能已经达不到要求,更不用说百万以上的数据量了,不管怎么设置索引处理时间都在10秒以上。因此,这次在做性能优化的时候我尝试了一个多年前构思但一直没有真正实现过的一种统计方法。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论