




免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习目标1.理解函数单调区间、单调性等概念.2.会划分函数的单调区间,判断单调性.3.会用定义证明函数的单调性知识点一函数的单调性思考画出函数f(x)x、f(x)x2的图像,并指出f(x)x、f(x)x2的图像的升降情况如何?梳理单调性是相对于区间来说的,函数图像在某区间上上升,则函数在该区间上为增函数反之则为减函数很多时候我们不知道函数图像是什么样的,而且用上升下降来刻画单调性很粗糙所以有以下定义:一般地,在函数yf(x)的定义域内的一个区间a上,如果对于任意两数x1,x2a,当x1x2时,都有f(x1)f(x2),那么,就称函数yf(x)在区间a上是_,有时也称函数yf(x)在区间a上是_在函数yf(x)的定义域内的一个区间a上,如果对于任意两数x1,x2a,当x1f(x2),那么,就称函数yf(x)在区间a上是_,有时也称函数yf(x)在区间a上是_如果函数yf(x)在定义域的某个子集上是增加的或是减少的,就称函数yf(x)在该子集上具有单调性;如果函数yf(x)在整个定义域内是增加的或是减少的,我们分别称这个函数是增函数或减函数,统称为单调函数知识点二函数的单调区间思考我们已经知道f(x)x2在(,0 上是减少的,f(x)在区间(,0)上是减少的,这两个区间能不能交换?梳理一般地,有下列常识:(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,所以单调区间的端点若属于定义域,则该点处区间可开可闭,若区间端点不属于定义域则只能开(2)单调区间d定义域i.(3)遵循最简原则,单调区间应尽可能大类型一求单调区间并判断单调性例1如图是定义在区间5,5 上的函数yf(x),根据图像说出函数的单调区间,以及在每一单调区间上,它是增加的还是减少的?反思与感悟函数的单调性是在定义域内的某个区间上的性质,单调区间是定义域的子集;当函数出现两个以上单调区间时,单调区间之间可用“,”分开,不能用“”,可以用“和”来表示;在单调区间d上函数要么是增加的,要么是减少的,不能二者兼有跟踪训练1写出函数y|x22x3|的单调区间,并指出单调性类型二证明单调性例2证明f(x)在其定义域上是增函数反思与感悟运用定义判断或证明函数的单调性时,应在函数的定义域内给定的区间上任意取x1,x2且x10时,f(x)1.求证:函数f(x)在r上是增函数反思与感悟因为抽象函数不知道解析式,所以不能代入求f(x1)f(x2),但可以借助题目提供的函数性质来确定f(x1)f(x2)的大小,这时就需要根据解题需要对抽象函数进行赋值跟踪训练3已知函数f(x)的定义域是r,对于任意实数m,n,恒有f(mn)f(m)f(n),且当x0时,0f(x)1.求证:f(x)在r上是减函数类型三单调性的应用例4若函数f(x)是定义在r上的减函数,则a的取值范围为()a,)b(0,)c,)d(, ,)反思与感悟分段函数在定义域上单调,除了要保证各段上单调外,还要接口处不能反超另外,函数在单调区间上的图像不一定是连续不断的跟踪训练4已知函数f(x)x22ax3在区间1,2 上具有单调性,则实数a的取值范围为_例5已知yf(x)在定义域(1,1)上是减函数,且f(1a)f(2a1),求a的取值范围反思与感悟若已知函数f(x)的单调性,则由x1,x2的大小,可得f(x1),f(x2)的大小;由f(x1),f(x2)的大小,可得x1,x2的大小跟踪训练5在例5中若函数yf(x)的定义域为r,且为增函数,f(1a)f(2a1),则a的取值范围又是什么?1函数yf(x)在区间2,2 上的图像如图所示,则此函数的增区间是()a2,0 b0,1 c2,1 d1,1 2函数y的减区间是()a0,) b(,0 c(,0),(0,) d(,0)(0,)3在下列函数f(x)中,满足对任意x1,x2(0,),当x1f(x2)的是()af(x)x2 bf(x)cf(x)|x| df(x)2x14已知函数yf(x)满足:f(2)f(1),f(1)f(1),则x的取值范围是()ax1c1x1 dx11若f(x)的定义域为d,ad,bd,f(x)在a和b上都递减,未必有f(x)在ab上递减2对增函数的判断,对任意x1x2,都有f(x1)0或0.对减函数的判断,对任意x1f(x2),相应地也可用一个不等式来替代:(x1x2)f(x1)f(x2) 0或0.3熟悉常见的一些单调性结论,包括一次函数,二次函数,反比例函数等4若f(x),g(x)都是增函数,h(x)是减函数,则:在定义域的交集(非空)上,f(x)g(x)递增,f(x)h(x)递增,f(x)递减,递减(f(x)0)5对于函数值恒正(或恒负)的函数f(x),证明单调性时,也可以作商与1比较答案精析问题导学知识点一思考两函数的图像如下:函数f(x)x的图像由左到右是上升的;函数f(x)x2的图像在y轴左侧是下降的,在y轴右侧是上升的梳理增加的递增的减少的递减的知识点二思考f(x)x2的减区间可以写成(,0),而f(x)的减区间(,0)不能写成(,0 ,因为0不属于f(x)的定义域题型探究例1解yf(x)的单调区间有5,2 ,2,1 ,1,3 ,3,5 ,其中yf(x)在区间5,2 ,1,3 上是减少的,在区间2,1 ,3,5 上是增加的跟踪训练1解先画出f(x)的图像,如图所以y|x22x3|的单调区间有(,1 ,1,1 ,1,3 ,3,),其中递减区间是(,1 ,1,3 ;递增区间是1,1 ,3,)例2证明f(x)的定义域为0,)设x1,x2是定义域0,)上的任意两个实数,且x1x2,则f(x1)f(x2).0x1x2,x1x20,f(x1)f(x2)0,即f(x1)f(x2),f(x)在定义域0,)上是增函数跟踪训练2证明设x1,x2是实数集r上的任意实数,且1x1x2,则f(x1)f(x2)x1(x2)(x1x2)()(x1x2)(x1x2)(1)(x1x2)()1x1x2,x1x20,10,故(x1x2)()0,即f(x1)f(x2)0,即f(x1)x2.令xyx1,yx2,则xx1x20.f(x1)f(x2)f(xy)f(y)f(x)f(y)1f(y)f(x)1.x0,f(x)1,f(x)10,f(x1)f(x2)0,即f(x1)f(x2)函数f(x)在r上是增函数方法二设x1x2,则x1x20,从而f(x1x2)1,即f(x1x2)10.f(x1)fx2(x1x2) f(x2)f(x1x2)1f(x2),故f(x)在r上是增函数跟踪训练3证明对于任意实数m,n,恒有f(mn)f(m)f(n),令m1,n0,可得f(1)f(1)f(0),当x0时,0f(x)1,f(1)0,f(0)1.令mx0,nx0,则f(mn)f(0)f(x)f(x)1,f(x)f(x)1,又x0时,0f(x)1,f(x)1.对任意实数x,f(x)恒大于0.设任意x10,0f(x2x1)1,f(x2)f(x1)f(x2x1)x1 f(x1)f(x2x1)f(x1)f(x1)f(x1)f(x2x1)1 0,f(x)在r上是减少的例4a要使f(x)在r上是减函数,需满足:解得a. 跟踪训练4a1或a2解析由于二次函数开口向上,故其增区间为a,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-湖南-湖南图书资料员三级(高级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-湖北-湖北林木种苗工四级(中级工)历年参考题库含答案解析
- 现场演艺市场复苏与科技展览演出创新研究报告
- 2025年交通设备制造业数字化转型中的网络安全挑战与对策报告
- 2025年事业单位工勤技能-浙江-浙江堤灌维护工一级(高级技师)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-河南-河南计量检定工五级(初级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-河南-河南护理员一级(高级技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-河南-河南医技工一级(高级技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-河南-河南仓库管理员五级(初级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-河北-河北机械热加工二级(技师)历年参考题库含答案解析(5套)
- 眼科OCT基础知识课件
- 2025-2030中国还原铁粉行业市场发展趋势与前景展望战略研究报告
- 2024年《防治煤与瓦斯突出细则》培训课件
- 经皮肾术后护理试题及答案
- 河南航空港发展投资集团招聘笔试真题2024
- 烤烟种植与管理技术精粹
- 财政投资评审咨询服务预算和结算评审项目投标文件(技术方案)
- 《半年度工作总结与规划》课件
- 《稻田养鸭技术》课件
- 污水处理设施运维服务投标方案(技术标)
- 投标物业管理服务方案
评论
0/150
提交评论