




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2005-2008圆锥曲线高考题襄阳五中 段仁保一 选择题:1.(2008福建卷11)又曲线(a0,b0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为A.(1,3)B.C.(3,+)D.2.(2008海南卷11)已知点P在抛物线y2 = 4x上,那么点P到点Q(2,1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为( )A. (,1)B. (,1)C. (1,2)D. (1,2)4.(2008湖南卷8)若双曲线(a0,b0)上横坐标为的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( )A.(1,2) B.(2,+) C.(1,5) D. (5,+)7.(2008全国二9)设,则双曲线的离心率的取值范围是( )ABCD8.(2008山东卷(10)设椭圆C1的离心率为,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为(A) (B)(C) (D)9.(2008陕西卷8)双曲线(,)的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为( )ABCD10.(2008四川卷12)已知抛物线的焦点为,准线与轴的交点为,点在上且,则的面积为 ( )() () () ()11.(2008天津卷7)设椭圆(,)的右焦点与抛物线的焦点相同,离心率为,则此椭圆的方程为(A) (B) (C) (D)14.(2008重庆卷8)已知双曲线(a0,b0)的一条渐近线为y=kx(k0),离心率e=,则双曲线方程为(A)=1(B) (C)(D)二 填空题:1.(2008海南卷14)过双曲线的右顶点为A,右焦点为F。过点F平行双曲线的一条渐近线的直线与双曲线交于点B,则AFB的面积为_2.(2008湖南卷12)已知椭圆(ab0)的右焦点为F,右准线为,离心率e =过顶点A(0,b)作AM,垂足为M,则直线FM的斜率等于 . 3.(2008江苏卷12)在平面直角坐标系中,椭圆1( 0)的焦距为2,以O为圆心,为半径的圆,过点作圆的两切线互相垂直,则离心率= 4.(2008江西卷15)过抛物线的焦点作倾角为的直线,与抛物线分别交于、两点(在轴左侧),则 5.(2008全国一14)已知抛物线的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 6.(2008全国一15)在中,若以为焦点的椭圆经过点,则该椭圆的离心率 三 解答题 2.(2008北京卷19)(本小题共14分)已知菱形的顶点在椭圆上,对角线所在直线的斜率为1()当直线过点时,求直线的方程;()当时,求菱形面积的最大值3.(2008福建卷21)(本小题满分12分)如图、椭圆的一个焦点是F(1,0),O为坐标原点.已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;4.(2008广东卷18)(本小题满分14分)设,椭圆方程为,抛物线方程为如图4所示,过点作轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点(1)求满足条件的椭圆方程和抛物线方程;(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标)5.( 2008湖北卷19).(本小题满分13分)如图,在以点为圆心,为直径的半圆中,是半圆弧上一点,曲线是满足为定值的动点的轨迹,且曲线过点.()建立适当的平面直角坐标系,求曲线的方程;()设过点的直线l与曲线相交于不同的两点、.若的面积不小于,求直线斜率的取值范围.8.(2008辽宁卷20)(本小题满分12分)在直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为,直线与C交于A,B两点()写出C的方程;()若,求k的值;()若点A在第一象限,证明:当k0时,恒有|9.(2008全国一21)(本小题满分12分)(注意:在试题卷上作答无效)双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交于两点已知成等差数列,且与同向()求双曲线的离心率;()设被双曲线所截得的线段的长为4,求双曲线的方程10.(2008全国二21)(本小题满分12分)设椭圆中心在坐标原点,是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点()若,求的值;()求四边形面积的最大值11.(2008山东卷22) (本小题满分14分)如图,设抛物线方程为x2=2py(p0),M为 直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B.()求证:A,M,B三点的横坐标成等差数列;()已知当M点的坐标为(2,-2p)时,求此时抛物线的方程;()是否存在点M,使得点C关于直线AB的对称点D在抛物线上,其中,点C满足(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.13.(2008四川卷21)(本小题满分12分)设椭圆的左右焦点分别为,离心率,右准线为,是上的两个动点,()若,求的值;()证明:当取最小值时,与共线。14.(2008天津卷22)(本小题满分14分)已知中心在原点的双曲线C的一个焦点是,一条渐近线的方程是()求双曲线C的方程;()若以为斜率的直线与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围15.(2008浙江卷20)(本题15分)已知曲线C是到点P()和到直线距离相等的点的轨迹。是过点Q(-1,0)的直线,M是C上(不在上)的动点;A、B在上,轴(如图)。 ()求曲线C的方程; ()求出直线的方程,使得为常数。2007理科圆锥曲线(9)已知双曲线的左、右焦点分别为,是准线上一点,且,则双曲线的离心率是()11设分别是双曲线的左、右焦点,若双曲线上存在点,使且,则双曲线的离心率为( )ABCD12设为抛物线的焦点,为该抛物线上三点,若,则( )A9B6C4D320(本小题满分12分)在直角坐标系中,以为圆心的圆与直线相切(1)求圆的方程;(2)圆与轴相交于两点,圆内的动点使成等比数列,求的取值范围全国1理(4)已知双曲线的离心率为,焦点是,则双曲线方程为()ABCD(11)抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点,垂足为,则的面积是()ABCD宁夏理6已知抛物线的焦点为,点,在抛物线上,且, 则有()13已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为辽宁理11设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为( )ABCD14设椭圆上一点到左准线的距离为10,是该椭圆的左焦点,若点满足,则= 20(本小题满分14分)已知正三角形的三个顶点都在抛物线上,其中为坐标原点,设圆是的内接圆(点为圆心)(I)求圆的方程;(II)设圆的方程为,过圆上任意一点分别作圆的两条切线,切点为,求的最大值和最小值江西理9设椭圆的离心率为,右焦点为,方程的两个实根分别为和,则点()必在圆内必在圆上必在圆外以上三种情形都有可能江苏理3在平面直角坐标系中,双曲线中心在原点,焦点在轴上,一条渐近线方程为,则它的离心率为A B C D15在平面直角坐标系中,已知顶点和,顶点在椭圆上,则. 9设分别是椭圆()的左、右焦点,是其右准线上纵坐标为(为半焦距)的点,且,则椭圆的离心率是( )ABCD19(本小题满分13分)已知双曲线的右焦点为,过点的动直线与双曲线相交于两点,点的坐标是(I)证明,为常数;(II)若动点满足(其中为坐标原点),求点的轨迹方程湖北理7双曲线的左准线为,左焦点和右焦点分别为和;抛物线的准线为,焦点为与的一个交点为,则等于( )ABCD10已知直线(是非零常数)与圆有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有( )A60条B66条C72条D78条广东理11在平面直角坐标系中,有一定点,若线段的垂直平分线过抛物线则该抛物线的方程是 福建理6以双曲线的右焦点为圆心,且与其渐近线相切的圆的方程是( )ABCD北京理17(本小题共14分)矩形的两条对角线相交于点,边所在直线的方程为,点在边所在直线上(I)求边所在直线的方程;(II)求矩形外接圆的方程;(III)若动圆过点,且与矩形的外接圆外切,求动圆的圆心的轨迹方程安徽理(9)如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为 (A)(B)(C)(D)2006圆锥曲线的方程1(2006年福建卷)已知双曲线的右焦点为F,若过点F且倾斜角为的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 ( )(A)(B)(C)(D)2(2006年安徽卷)若抛物线的焦点与椭圆的右焦点重合,则的值为( )3(2006年广东卷)已知双曲线,则双曲线右支上的点P到右焦点的距离与点P到右准线的距离之比等于A. B. C. 2 D.44(2006年陕西卷)已知双曲线的两条渐近线的夹角为,则双曲线的离心率为 ()(A)(B)(C)(D)25(2006年上海春卷)抛物线的焦点坐标为( ) (A). (B). (C). (D).6(2006年上海春卷)若,则“”是“方程表示双曲线”的( ) (A)充分不必要条件. (B)必要不充分条件. (C)充要条件. (D)既不充分也不必要条件.7(2006年全国卷II)已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ( )(A)2 (B)6 (C)4 (D)128(2006年全国卷II)已知双曲线的一条渐近线方程为yx,则双曲线的离心率为 ( )(A) (B) (C) (D)9(2006年四川卷)已知两定点,如果动点满足,则点的轨迹所包围的图形的面积等于()(A) (B) (C) (D) 10(2006年四川卷)直线与抛物线交于两点,过两点向抛物线的准线作垂线,垂足分别为,则梯形的面积为()(A)48 (B)56 (C)64 (D)7211(2006年四川卷)如图,把椭圆的长轴分成等份,过每个分点作轴的垂线交椭圆的上半部分于七个点,是椭圆的一个焦点,则_;12(2006年天津卷)如果双曲线的两个焦点分别为、,一条渐近线方程为,那么它的两条准线间的距离是( )A B C D 13(2006年湖北卷)设过点的直线分别与轴的正半轴和轴的正半轴交于、两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是() A. B. C. D. 15(2006年全国卷I)双曲线的虚轴长是实轴长的2倍,则A B C D16(2006年全国卷I)抛物线上的点到直线距离的最小值是A B C D17(2006年全国卷I)用长度分别为2、3、4、5、6(单位:)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为A B C D18(2006年江西卷)设O为坐标原点,F为抛物线y24x的焦点,A是抛物线上一点,若4,则点A的坐标是( )A(2,2) B. (1,2) C.(1,2)D.(2,2)19(2006年江西卷)P是双曲线的右支上一点,M、N分别是圆(x5)2y24和(x5)2y21上的点,则|PM|PN|的最大值为( )A. 6 B.7 C.8 D.920(2006年辽宁卷)曲线与曲线的(A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同21(2006年辽宁卷)直线与曲线 的公共点的个数为(A)1 (B)2 (C)3 (D)422(2006年上海卷)已知椭圆中心在原点,一个焦点为F(2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 23(2006年上海卷)若曲线|1与直线没有公共点,则、分别应满足的条件是 24( 2006年浙江卷)若双曲线上的点到左准线的距离是到左焦点距离的,则= ( )(A) (B) (C) (D)25. ( 2006年湖南卷)过双曲线M:的左顶点A作斜率为1的直线,若与双曲线M的两条渐近线分别相交于B、C,且|AB|=|BC|,则双曲线M的离心率是 ( )A. B. C. D. 26(2006年山东卷)在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为 ( )(A) (B) (C) (D)27(2006年山东卷)某公司招收男职员x名,女职员y名,x和y须满足约束条件则z=10x+10y的最大值是 ( )(A)80 (B) 85 (C) 90 (D)9528(2006年山东卷)已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则y12+y22的最小值是 .2005年高考全国试题分类解析(圆锥曲线)一、选择题:1(2005重庆卷) 若动点(x,y)在曲线(b0)上变化,则x2+2y的最大值为( ) (A) ;(B) ; (C) ;(D) 2b2. (2005浙江)函数yax21的图象与直线yx相切,则a( )(A) (B) (C) (D)13. (2005天津卷)设双曲线以椭圆长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( )ABCD4(2005天津卷)从集合1,2,3,11中任选两个元素作为椭圆方程中的m和n,则能组成落在矩形区域B=(x,y)| |x|11且|y|9内的椭圆个数为( )A43 B 72 C 86 D 905. (2005上海)过抛物线的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线( )A有且仅有一条 B有且仅有两条 C有无穷多条 D不存在6. (2005山东卷)设直线关于原点对称的直线为,若与椭圆的交点为A、B、,点为椭圆上的动点,则使的面积为的点的个数为( )(A)1 (B)2 (C)3 (D)47 (2005全国卷)已知双曲线的一条准线为,则该双曲线的离心率为()(A)(B)(C)(D)ABCD8.( 2005全国卷II) 双曲线的渐近线方程是( )(A) (B) (C) (D) 9. (2005全国卷II)已知双曲线的焦点为、,点在双曲线上且轴,则到直线的距离为( )(A) (B) (C) (D) 10. 抛物线上一点的纵坐标为4,则点与抛物线焦点的距离为( )(A) 2(B) 3(C) 4(D) 511. (2005全国卷III)设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若F1PF2为等腰直角三角形,则椭圆的离心率是()(A) (B) (C) (D)12. (2005辽宁卷)已知双曲线的中心在原点,离心率为.若它的一条准线与抛物线的准线重合,则该双曲线与抛物线的交点到原点的距离是( )A2+BCD2113 .(2005江苏卷)抛物线y=4上的一点M到焦点的距离为1,则点M的纵坐标是( ) ( A ) ( B ) ( C ) ( D ) 014. 2005(江苏卷)(11)点P(-3,1)在椭圆的左准线上.过点P且方向为a=(2,-5)的光线,经直线=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为( ) ( A ) ( B ) ( C ) ( D ) 15.(2005湖南卷)已知双曲线1(a0,b0)的右焦点为F,右准线与一条渐近线交于点A,OAF的面积为(O为原点),则两条渐近线的夹角为( )A30B45C60D9016. (2005湖南卷)已知双曲线1(a0,b0)的右焦点为F,右准线与一条渐近线交于点A,OAF的面积为(O为原点),则两条渐近线的夹角为( )A30B45C60D9017. (2005湖北卷)双曲线离心率为2,有一个焦点与抛物线的焦点重合,则mn的值为( )ABCD18. (2005福建卷)已知定点A、B且|AB|=4,动点P满足|PA|PB|=3,则|PA|的最小值是( )ABCD519. (2005福建卷)设的最小值是( )ABC3D20. (2005广东卷)若焦点在轴上的椭圆的离心率为,则m=()()()()()21. (2005全国卷III)已知双曲线的焦点为F1、F2,点M在双曲线上且则点M到x轴的距离为()(A) (B) (C) (D)22.(2005福建卷)已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是( )ABCD二、填空题:1(2005江西卷)以下四个关于圆锥曲线的命题中:设A、B为两个定点,k为非零常数,则动点P的轨迹为双曲线;过定圆C上一定点A作圆的动点弦AB,O为坐标原点,若则动点P的轨迹为椭圆;方程的两根可分别作为椭圆和双曲线的离心率;双曲线有相同的焦点.其中真命题的序号为 (写出所有真命题的序号) 2. (2005重庆卷)已知,B是圆F:(F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为 3. (2005浙江) 过双曲线(a0,b0)的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_4. (2005上海)4直角坐标平面xoy中,若定点A(1,2)与动点P(x,y)满足=4。则点P的轨迹方程是 5. (2005上海)若椭圆长轴长与短轴长之比为2,它的一个焦点是(2,0),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中考专练:短文语境提示填空-(含答案)
- 江苏省徐州市2025年中考物理真题附真题答案
- 库房会计面试题库及答案
- 农业产业园项目可行性研究及2025年农业产业升级报告
- 地热能供暖2025年智慧城市能源系统应用现状与趋势报告
- 安全教育培训评估评语课件
- 金融科技企业估值方法在投资策略中的应用研究报告
- 农业产业化龙头企业在农业产业集聚中的发展模式与区域经济带动效应研究报告
- 特色农产品品牌与农产品期货市场互动关系研究报告
- 建筑公司工地施工安全执行方案
- GB/T 14715-2017信息技术设备用不间断电源通用规范
- 起重设备安装安全事故应急预案
- 教研组、备课组新学期教研组长会议课件讲义
- 生物质资源及其开发利用课件
- 物流网络规划与设计课件
- JB∕T 5245.4-2017 台式钻床 第4部分:技术条件
- 鞘膜积液的护理查房
- 《水工监测工》习题集最新测试题含答案
- 部编版三年级上册道德与法治第一单元第1课《学习伴我成长》课件
- 组合式塔吊基础施工专项方案(117页)
- 1、《国际贸易实务》课程标准解析
评论
0/150
提交评论