




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数y ax2 bx c图象和性质 一般地 抛物线y a x h 2 k与y ax2的相同 不同 知识回顾 y ax2 y a x h 2 k 形状 位置 左加右减 上正下负 y ax2 y ax2 k y a x h 2 y a x h 2 k 上下平移 左右平移 上下平移 左右平移 抛物线y a x h 2 k有如下特点 知识回顾 1 当a 0时 开口 当a 0时 开口 2 对称轴是 3 顶点坐标是 向上 向下 h k 直线X h 向上 1 2 向下 向下 3 7 2 6 向上 直线x 3 直线x 1 直线x 3 直线x 2 3 5 探究 如何画出的图象呢 我们知道 像y a x h 2 k这样的函数 容易确定相应抛物线的顶点为 h k 二次函数也能化成这样的形式吗 函数y ax bx c的对称轴 顶点坐标是什么 配方 函数y ax bx c的对称轴 顶点坐标是什么 1 说出下列函数的开口方向 对称轴 顶点坐标 函数y ax bx c的对称轴 顶点坐标是什么 对于y ax2 bx c我们可以确定它的开口方向 求出它的对称轴 顶点坐标 与y轴的交点坐标 与x轴的交点坐标 有交点时 这样就可以画出它的大致图象 y 2x2 5x 3 y x 3 x 2 y x2 4x 9 求下列二次函数图像的开口 顶点 对称轴 请画出草图 抛物线位置与系数a b c的关系 a决定抛物线的开口方向 a 0开口向上 a 0开口向下 a b决定抛物线对称轴的位置 对称轴是直线x a b同号 对称轴在y轴左侧 b 0 对称轴是y轴 a b异号 对称轴在y轴右侧 c决定抛物线与y轴交点的位置 c 0 图象与y轴交点在x轴上方 c 0 图象过原点 c 0 图象与y轴交点在x轴下方 顶点坐标是 b2 4ac决定抛物线与x轴交点情况 0 抛物线与x轴有两个交点 0 抛物线与x轴有唯一的公式点 0 抛物线与x轴无交点 二次函数有最大或最小值由a决定 当x 时 y有最大 最小 值 1 例3 已知函数y ax2 bx c的图象如下图所示 x 为该图象的对称轴 根据图象信息你能得到关于系数a b c的一些什么结论 y 1 x 1 抛物线y 2x2 8x 11的顶点在 A 第一象限B 第二象限C 第三象限D 第四象限2 不论k取任何实数 抛物线y a x k 2 k a 0 的顶点都在 A 直线y x上B 直线y x上C x轴上D y轴上3 若二次函数y ax2 4x a 1的最小值是2 则a的值是 4B 1C 3D 4或 1 C B A 4 若二次函数y ax2 bx c的图象如下 与x轴的一个交点为 1 0 则下列各式中不成立的是 A b2 4ac 0B 0 5 若把抛物线y x2 2x 1向右平移2个单位 再向下平移3个单位 得抛物线y x2 bx c 则 A b 2c 6B b 6 c 6C b 8c 6D b 8 c 18 B B 6 若一次函数y ax b的图象经过第二 三 四象限 则二次函数y ax2 bx 3的大致图象是 7 在同一直角坐标系中 二次函数y ax2 bx c与一次函数y ax c的大致图象可能是 C C 今天我学到了 函数y ax bx
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 培训考试题及答案
- 超限考试题及答案
- 高级保育员模拟题及参考答案
- 医师麻醉药品、精神药品处方权资格考核试题(附答案)
- 口腔专业组GCP研究团队培训考核试题(附答案)
- 麻醉手术中心工作管理制度、应急预案考核试题与答案
- 2025年度青贮原料采购与运输一体化服务合同
- 2025年特种材料研发生产销售一体化合同模板
- 2025年专利代签合同授权委托书
- 2025版云计算平台软件销售与定制化开发合作协议
- 2024年无人机相关项目招商引资方案
- 中职教育人工智能技术赋能
- 《机电一体化系统设计》第四章课件
- 新污染物科普知识讲座
- 运动性失语的护理课件
- GB 1886.232-2016食品安全国家标准食品添加剂羧甲基纤维素钠
- 地理信息系统技术概述课件
- 脑梗死病人-护理查房课件
- 人类行为与社会环境全套课件
- 医院介入手术病人护送交接流程
- 学校家庭教育指导(班主任培训班) 课件
评论
0/150
提交评论