




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
训练点24巧妙求和专题简析:若干个数排成一列称为数列。数列中的每一个数称为一项。其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。通项公式: 第n项=首项+(项数1)公差项数公式: 项数=(末项首项)公差1例1:有一个数列:4,10,16,22,52,这个数列共有多少项?分析与解答:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。项数=(524)61=9,即这个数列共有9项。练习一1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2,有一个等差数列:2,5,8,11,101,这个等差数列共有多少项?3,已知等差数列11,16,21,26,1001,这个等差数列共有多少项?例2:有一等差数列:3,7,11,15,这个等差数列的第100项是多少?分析与解答:这个等差数列的首项是3,公差是4,项数是100。要求第100项,可根据“末项=首项+公差(项数1)”进行计算。第100项=3+4(1001)=399练习二1,一等差数列,首项=3,公差=2,项数=10,它的末项是多少?2,求1,4,7,10这个等差数列的第30项。3,求等差数列2,6,10,14的第100项。例3:有这样一个数列:1,2,3,4,99,100。请求出这个数列所有项的和。分析与解答:如果我们把1,2,3,4,99,100与列100,99,3,2,1相加,则得到(1+100)+(2+99)+(3+98)+(99+2)+(100+1),其中每个小括号内的两个数的和都是101,一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2,就是所求数列的和。1+2+3+99+100=(1+100)1002=5050上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和:等差数列总和=(首项+末项)项数2这个公式也叫做等差数列求和公式。练习三计算下面各题。(1)1+2+3+49+50(2)6+7+8+74+75(3)100+99+98+61+60例4:求等差数列2,4,6,48,50的和。分析与解答:这个数列是等差数列,我们可以用公式计算。要求这一数列的和,首先要求出项数是多少:项数=(末项首项)公差+1=(502)2+1=25首项=2,末项=50,项数=25 等差数列的和=(2+50)252=650练习四计算下面各题。(1)2+6+10+14+18+22(2)5+10+15+20+195+200(3)9+18+27+36+261+270例5:计算(2+4+6+100)(1+3+5+99)分析与解答:容易发现,被减数与减数都是等差数列的和,因此,可以先分别求出它们各自的和,然后相减。进一步分析还可以发现,这两个数列其实是把1 100这100个数分成了奇数与偶数两个等差数列,每个数列都有50个项。因此,我们也可以把这两个数列中的每一项分别对应相减,可得到50个差,再求出所有差的和。(2+4+6+100)(1+3+5+99)=(21)+(43)+(65)+(10099)=1+1+1+1=50练习五用简便方法计算下面各题。(1)(2001+1999+1997+1995)(2000+1998+1996+1994)(2)(2+4+6+2000)(1+3+5+1999)(3)(1+3+5+1999)(2+4+6+1998)练习六1把一堆苹果分给8个朋友,要使每个人都能拿到苹果,而且每个人拿到苹果个数都不同的话,这堆苹果至少应该有_个。2图中是一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年反射疗法师大赛理论考试彩蛋押题参考答案详解
- 农发行安庆市太湖县2025秋招笔试性格测试题专练及答案
- 农发行永州市零陵区2025秋招数据分析师笔试题及答案
- 2025年贵州铜仁市思南县事业单位招聘114人方案笔试模拟试题及答案详解1套
- 驾驶校车考试题目及答案
- 嘉兴二模考试题及答案
- 家政保洁考试题目及答案
- 农发行北京市丰台区2025秋招英文面试题库及高分回答
- 2025年农村信用社招聘考试高分题库及完整答案详解(易错题)
- 供应商评估制度及采购管理
- 2023年中国工商银行秋季招聘考试真题及答案
- 医用物理学考试题及答案
- 足球运动康复训练计划
- 农村养殖技术培训
- 精细化工产业创新发展实施方案(2025-2027年)
- 面试各种测试题目及答案
- 出版专业中级实务复习笔记
- 2025年网信知识测试题及答案
- 炎症性肠病的病理
- TCTBA 001-2019 非招标方式采购代理服务规范
- 《东软实例介绍》课件
评论
0/150
提交评论