回溯法的24点问题.doc_第1页
回溯法的24点问题.doc_第2页
回溯法的24点问题.doc_第3页
回溯法的24点问题.doc_第4页
回溯法的24点问题.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

#include#includeusing namespace std;#includeconst double PRECISION = 1E-6; /精度常量const int COUNT_OF_NUMBER = 4; /算24点的自然数个数const int NUMBER_TO_BE_CAL = 24;bool flag=false;class RationalNumber /定义有理数类(分子、分母) protected: int numerator,denominator; /numerator:分子,denominator:分母 bool inf;/整数假 protected: int gcd(int a,int b) /求a和b的最大公约数 int temp; if(anumerator=numerator; this-denominator=denominator; Simplify(); virtual RationalNumber() void Simplify() if(denominator=1) inf=false; else if(numerator=0) denominator=1; inf=false; else int k=gcd(abs(numerator),abs(denominator); numerator/=k; denominator/=k; if(denominator=1) inf=false; else inf=true; RationalNumber operator+(const RationalNumber& b) const RationalNumber result; result.denominator=this-denominator*b.denominator; result.numerator=this-numerator*b.denominator+this-denominator*b.numerator; result.Simplify(); return result; RationalNumber operator-(const RationalNumber& b) const / 。 RationalNumber result; result.denominator=this-denominator*b.denominator; result.numerator=this-numerator*b.denominator-this-denominator*b.numerator; result.Simplify(); return result; RationalNumber operator*(const RationalNumber& b) const / 。 RationalNumber result; result.denominator=this-denominator*b.denominator; result.numerator=this-numerator*b.numerator; result.Simplify(); return result; RationalNumber operator/(const RationalNumber& b) const RationalNumber result; result.denominator=this-denominator*b.numerator; result.numerator=this-numerator*b.denominator; result.Simplify(); return result; RationalNumber& operator=(const RationalNumber& b) denominator=b.denominator; numerator=b.numerator; return (*this); RationalNumber& operator=(int b) denominator=1; numerator=b; return (*this); int Numerator() const return numerator; int Denominator() const return denominator; string strshow() string str; char buffer20; itoa(numerator,buffer,10); str=buffer; if(denominator!=1) itoa(denominator,buffer,10); str=str+/+buffer; return str; ;RationalNumber numberCOUNT_OF_NUMBER;string expressionCOUNT_OF_NUMBER;bool Search(int n) /递归函数 if (n=1) if (fabs(number0.Numerator ()*1.0/number0.Denominator ()-NUMBER_TO_BE_CAL)PRECISION) coutexpression0endl; /输出表达式ue flag=true; return true; else / flag=false; return false; int i,j,k; RationalNumber temp; for ( i=0;in;i+) if(n=4) temp=numberi-numberi+1; if(temp.Numerator ()=0) continue; for (j=i+1;jn;j+) if(n=4) for(k=i+1;kj;k+) temp=numberj-numberk; if(temp.Numerator ()=0) break; if(k=0) / Search(n-1); if (Search(n-1)&n!=4) numberi=a; numberj=b; expressioni=expa; expressionj=expb; return true; expressioni=(+expb+-+expa+); numberi=b-a; if(numberi.Numerator() =0) / Search(n-1); if (Search(n-1)&n!=4) numberi=a; numberj=b; expressioni=expa; expressionj=expb; return true; /乘法 expressioni=(+expa+*+expb+); numberi=a*b; / Search(n-1); if (Search(n-1)&n!=4) numberi=a; numberj=b; expressioni=expa; expressionj=expb; return true; /除法也有两种情况a/b和b/a if (b.Numerator()!=0) expressioni=(+expa+/+expb+); numberi=a/b; / Search(n-1); if (Search(n-1)&n!=4) numberi=a; numberj=b; expressioni=expa; expressionj=expb; return true; if (a.Numerator()!=0) expressioni=(+expb+/+expa+); numberi=b/a; / Search(n-1); if (Search(n-1)&n!=4) numberi=a; numberj=b; expressioni=expa; expressionj=expb; return true; /本轮调用完毕后,用a,b,expa,expb将数组number和expression恢复原状 numberi=a; numberj=b; expressioni=expa; expressionj=expb; return false;int main() int i,x; char xx; do cout请输入四个整数:; flag=false; for (i=0;ix; numberi=x; itoa(x,buffer,10); /itoa():将一个10进制的integer数转换为string类型 /即:把输入的int型操作数x,转变成可以放在buffer中的string类型 expressioni=buffer; /用expressioni指针指向buffer数组空间的起始位置 Search(4); if(flag=false) cout无解n; coutxx; while(xx=Y|xx=y); return 0;#include#includeusing namespace std;#includeconst double PRECISION = 1E-6; const int COUNT_OF_NUMBER = 4; const int NUMBER_TO_BE_CAL = 24;bool flag=false;class RationalNumber protected: int numerator,denominator; bool inf; protected: int gcd(int a,int b) int temp; if(anumerator=numerator; this-denominator=denominator; Simplify(); virtual RationalNumber() void Simplify() if(denominator=1) inf=false; else if(numerator=0) denominator=1; inf=false; else int k=gcd(abs(numerator),abs(denominator); numerator/=k; denominator/=k; if(denominator=1) inf=false; else inf=true; RationalNumber operator+(const RationalNumber& b) const RationalNumber result; result.denominator=this-denominator*b.denominator; result.numerator=this-numerator*b.denominator+this-denominator*b.numerator; result.Simplify(); return result; RationalNumber operator-(const RationalNumber& b) const / 。 RationalNumber result; result.denominator=this-denominator*b.denominator; result.numerator=this-numerator*b.denominator-this-denominator*b.numerator; result.Simplify(); return result; RationalNumber operator*(const RationalNumber& b) const / 。 RationalNumber result; result.denominator=this-denominator*b.denominator; result.numerator=this-numerator*b.numerator; result.Simplify(); return result; RationalNumber operator/(const RationalNumber& b) const RationalNumber result; result.denominator=this-denominator*b.numerator; result.numerator=this-numerator*b.denominator; result.Simplify(); return result; RationalNumber& operator=(const RationalNumber& b) denominator=b.denominator; numerator=b.numerator; return (*this); RationalNumber& operator=(int b) denominator=1; numerator=b; return (*this); int Numerator() const return numerator; int Denominator() const return denominator; string strshow() string str; char buffer20; itoa(numerator,buffer,10); str=buffer; if(denominator!=1) itoa(denominator,buffer,10); str=str+/+buffer; return str; ;RationalNumber numberCOUNT_OF_NUMBER;string expressionCOUNT_OF_NUMBER;bool Search(int n) if (n=1) if (fabs(number0.Numerator ()*1.0/number0.Denominator ()-NUMBER_TO_BE_CAL)PRECISION) coutexpression0endl; flag=true; return true; else / flag=false; return false; int i,j,k; RationalNumber temp; for ( i=0;in;i+) if(n=4) temp=numberi-numberi+1; if(temp.Numerator ()=0) continue; for (j=i+1;jn;j+) if(n=4) for(k=i+1;kj;k+) temp=numberj-numberk; if(temp.Numerator ()=0) break; if(k=0) if (Search(n-1)&n!=4) numberi=a; numberj=b; expressioni=expa; expressionj=expb; return true; expressioni=(+expb+-+expa+); numberi=b-a; if(numberi.Numerator() =0) if (Search(n-1)&n!=4) numberi=a; numberj=b; expressioni=expa; expressionj=expb; return true; expression

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论