空间几何体知识点.doc_第1页
空间几何体知识点.doc_第2页
空间几何体知识点.doc_第3页
空间几何体知识点.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

空间几何体1.一些特殊棱柱、棱锥、棱台的概念和主要性质名称棱柱直棱柱正棱柱图 形定 义有两个面互相平行,而其余每相邻两个面的交线都互相平行的多面体侧棱垂直于底面的棱柱底面是正多边形的直棱柱侧棱平行且相等平行且相等平行且相等侧面的形状平行四边形矩形全等的矩形对角面的形状平行四边形矩形矩形平行于底面的截面的形状与底面全等的多边形与底面全等的多边形与底面全等的正多边形名称棱锥正棱锥棱台正棱台图形定义有一个面是多边形,其余各面是有一个公共顶点的三角形的多面体底面是正多边形,且顶点在底面的射影是底面的射影是底面和截面之间的部分用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分由正棱锥截得的棱台侧棱相交于一点但不一定相等相交于一点且相等延长线交于一点相等且延长线交于一点侧面的形状三角形全等的等腰三角形梯形全等的等腰梯形对角面的形状三角形等腰三角形梯形等腰梯形平行于底的截面形状与底面相似的多边形与底面相似的正多边形与底面相似的多边形与底面相似的正多边形其他性质高过底面中心;侧棱与底面、侧面与底面、相邻两侧面所成角都相等两底中心连线即高;侧棱与底面、侧面与底面、相邻两侧面所成角都相等几种特殊四棱柱的特殊性质名称特殊性质平行六面体底面和侧面都是平行四边行;四条对角线交于一点,且被该点平分直平行六面体侧棱垂直于底面,各侧面都是矩形;四条对角线交于一点,且被该点平分长方体底面和侧面都是矩形;四条对角线相等,交于一点,且被该点平分正方体棱长都相等,各面都是正方形四条对角线相等,交于一点,且被该点平分2 三视图画法规则高平齐:主视图与左视图的高要保持平齐长对正:主视图与俯视图的长应对正宽相等:俯视图与左视图的宽度应相等3 画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法4 空间几何体的表面积:(1)直棱柱的侧面展开图是矩形;设棱柱的高为,底面多边形的周长为,则直棱柱的侧面积;(2)正棱锥的侧面展开图是全等的等腰三角形;设正棱锥底面正多边形的边长为,底面周长为,斜高为,则正棱锥的侧面积;(3)正棱台的侧面展开图是全等的等腰梯形;设正棱台的上底面、下底面边长分别为、,对应的周长分别为、,斜高为,则正棱台的侧面积;(4)圆柱的侧面展开图是矩形;设圆柱的底面半径为,母线长为,则圆柱的底面面积为,侧面积为,圆柱的表面积;(5)圆锥的侧面展开图是扇形;设圆锥的底面半径为,母线长为,则圆锥的侧面积为,表面积;(6)圆台的侧面展开图是扇环;设圆台的两底面半径分别为、,母线长为,则圆台的侧面积为,表面积;(7)设球的半径为,则球的表面积.5 空间几何体的体积:(1)设柱体(棱柱、圆柱)的底面积为,高为,则柱体的体积;(2)设锥体(棱锥、圆锥)的底面积为,高为,则锥体的体积;(3)设台体(棱台、圆台)的上、下底面积分别为、,高为,则台体的体积;(4)设圆柱的底面半径为,高为,则圆柱的体积;(5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论