人教A版必修2 4.3.1 空间直角坐标系 4.3.2 空间两点间的距离公式 学案.DOC_第1页
人教A版必修2 4.3.1 空间直角坐标系 4.3.2 空间两点间的距离公式 学案.DOC_第2页
人教A版必修2 4.3.1 空间直角坐标系 4.3.2 空间两点间的距离公式 学案.DOC_第3页
人教A版必修2 4.3.1 空间直角坐标系 4.3.2 空间两点间的距离公式 学案.DOC_第4页
人教A版必修2 4.3.1 空间直角坐标系 4.3.2 空间两点间的距离公式 学案.DOC_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4.3空间直角坐标系4.3.1空间直角坐标系4.3.2空间两点间的距离公式学习目标:1.了解空间直角坐标系的建系方式(难点)2.能在空间直角坐标系中求出点的坐标和已知坐标作出点(重点、易错点)3.理解空间两点间距离公式的推导过程和方法(难点)4.掌握空间两点间的距离公式,能够用空间两点间距离公式解决简单的问题(重点)自 主 预 习探 新 知1空间直角坐标系 定义以空间中两两垂直且相交于一点o的三条直线分别为x轴、y轴、z轴,这时就说建立了空间直角坐标系oxyz,其中点o叫做坐标原点,x轴、y轴、z轴叫做坐标轴通过每两个坐标轴的平面叫做坐标平面,分别称为xoy平面、yoz平面、zox平面画法在平面上画空间直角坐标系oxyz时,一般使xoy135,yoz90图示说明本书建立的坐标系都是右手直角坐标系,即在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,中指指向z轴的正方向,则称这个坐标系为右手直角坐标系2空间中一点的坐标空间一点m的坐标可用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点m在此空间直角坐标系中的坐标,记作m(x,y,z),其中x叫做点m的横坐标,y叫做点m的纵坐标,z叫做点m的竖坐标3空间两点间的距离公式 (1)点p(x,y,z)到坐标原点o(0,0,0)的距离|op|.(2)任意两点p1(x1,y1,z1),p2(x2,y2,z2)间的距离|p1p2|.基础自测1思考辨析(1)在空间直角坐标系中,在ox轴上的点的坐标一定是(0,b,c)()(2)在空间直角坐标系中,在yoz平面上的点的坐标一定可写成(0,b,c)()(3)在空间直角坐标系中,在oz轴上的点的坐标可记作(0,0,c)()(4)在空间直角坐标系中,在xoz平面上的点的坐标是(a,0,c)()提示(1)ox轴上的点的坐标是(a,0,0)(2)(3)(4) 2在空间直角坐标系中,点p(3,4,5)与q(3,4,5)两点的位置关系是()a关于x轴对称b关于xoy平面对称c关于坐标原点对称d以上都不对a点p(3,4,5)与q(3,4,5)两点的横坐标相同,而纵坐标、竖坐标互为相反数,所以两点关于x轴对称选a.3空间两点p1(1,2,3),p2(3,2,1)之间的距离为_2|p1p2|2.合 作 探 究攻 重 难空间中点的坐标的确定在棱长为1的正方体abcda1b1c1d1中,e,f分别是d1d,bd的中点,g在棱cd上,且cgcd,h为c1g的中点,试建立适当的坐标系,写出e,f,g,h的坐标. 【导学号:07742313】解建立如图所示的空间直角坐标系点e在z轴上,它的x坐标、y坐标均为0,而e为dd1的中点,故其坐标为.由f作fmad,fndc,垂足分别为m,n,由平面几何知识知fm,fn,故f点坐标为.点g在y轴上,其x,z坐标均为0,又gd,故g点坐标为.由h作hkcg于k,由于h为c1g的中点故hk,ck,dk,故h点坐标为.规律方法求某点p的坐标的方法先找到点p在xoy平面上的射影m,过点m向x轴作垂线,确定垂足n.其中|on|,|nm|,|mp|即为点p坐标的绝对值,再按onmp确定相应坐标的符号(与坐标轴同向为正,反向为负),即可得到相应的点p的坐标.提醒:求某点的坐标时,一般先找出这一点在某一坐标平面上的射影,确定其两个坐标,再找出它在另一轴上的射影(或者通过它到这个坐标平面的距离加上正负号),确定第三个坐标.跟踪训练1已知棱长为2的正方体abcdabcd,建立如图431所示不同的空间直角坐标系,试分别写出正方体各顶点的坐标图431解(1)对于图,因为d是坐标原点,a,c,d分别在x轴、y轴、z轴的正半轴上,又正方体的棱长为2,所以d(0,0,0),a(2,0,0),c(0,2,0),d(0,0,2)因为b点在xdy平面上,它在x轴、y轴上的射影分别为a,c,所以b(2,2,0)同理,a(2,0,2),c(0,2,2)因为b在xdy平面上的射影是b,在z轴上的射影是d,所以b(2,2,2)(2)对于图,a,b,c,d都在xdy平面的下方,所以其竖坐标都是负的,a,b,c,d都在xdy平面上,所以其竖坐标都是零因为d是坐标原点,a,c分别在x轴、y轴的正半轴上,d在z轴的负半轴上,且正方体的棱长为2,所以d(0,0,0),a(2,0,0),c(0,2,0),d(0,0,2)同(1)得b(2,2,0),a(2,0,2),c(0,2,2),b(2,2,2).求空间对称点的坐标在空间直角坐标系中,点p(2,1,4)(1)求点p关于x轴的对称点的坐标;(2)求点p关于xoy平面的对称点的坐标;(3)求点p关于点m(2,1,4)的对称点的坐标 【导学号:07742314】思路探究:对照空间点的对称规律写出坐标解(1)由于点p关于x轴对称后,它在x轴的分量不变,在y轴、z轴的分量变为原来的相反数,所以对称点为p1(2,1,4)(2)由于点p关于xoy平面对称后,它在x轴、y轴的分量不变,在z轴的分量变为原来的相反数,所以对称点为p2(2,1,4)(3)设对称点为p3(x,y,z),则点m为线段pp3的中点,由中点坐标公式,可得x22(2)6,y2(1)13,z2(4)412,所以p3(6,3,12)规律方法1求空间对称点的规律方法空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论2空间直角坐标系中,任一点p(x,y,z)的几种特殊对称点的坐标如下:(1)关于原点对称的点的坐标是p1(x,y,z);(2)关于x轴(横轴)对称的点的坐标是p2(x,y,z);(3)关于y轴(纵轴)对称的点的坐标是p3(x,y,z);(4)关于z轴(竖轴)对称的点的坐标是p4(x,y,z);(5)关于xoy坐标平面对称的点的坐标是p5(x,y,z);(6)关于yoz坐标平面对称的点的坐标是p6(x,y,z);(7)关于xoz坐标平面对称的点的坐标是p7(x,y,z)跟踪训练2已知m(2,1,3),求m关于原点对称的点m1,m关于xoy平面对称的点m2,m关于x轴、y轴对称的点m3,m4.解由于点m与m1关于原点对称,所以m1(2,1,3);点m与m2关于xoy平面对称,横坐标与纵坐标不变,竖坐标变为原来的相反数,所以m2(2,1,3);m与m3关于x轴对称,则m3的横坐标不变,纵坐标和竖坐标变为原来的相反数,即m3(2,1,3),同理m4(2,1,3).空间两点间的距离探究问题1已知两点p(1,0,1)与q(4,3,1),请求出p、q之间的距离提示|pq|.2上述问题中,若在z轴上存在点m,使得|mp|mq|,请求出点m的坐标提示设m(0,0,z),由|mp|mq|,得(1)202(z1)24232(1z)2,z6.m(0,0,6)如图432所示,在长方体abcda1b1c1d1中,|ab|ad|3,|aa1|2,点m在a1c1上,|mc1|2|a1m|,n在d1c上且为d1c的中点,求线段mn的长度. 【导学号:07742315】图432思路探究:先建立空间直角坐标系,求出点m、n的坐标,然后利用两点间的距离公式求解解如图所示,分别以ab,ad,aa1所在的直线为x轴、y轴、z轴建立空间直角坐标系由题意可知c(3,3,0),d(0,3,0),|dd1|cc1|aa1|2,c1(3,3,2),d1(0,3,2),n为cd1的中点,n.m是a1c1的三分之一分点且靠近a1点,m(1,1,2)由两点间距离公式,得|mn|.规律方法利用空间两点间的距离公式求线段长度问题的一般步骤为:跟踪训练3如图433所示,直三棱柱abca1b1c1中,|c1c|cb|ca|2,accb,d,e分别是棱ab,b1c1的中点,f是ac的中点,求de,ef的长度图433解以点c为坐标原点,ca、cb、cc1所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系|c1c|cb|ca|2,c(0,0,0),a(2,0,0),b(0,2,0),c1(0,0,2),b1(0,2,2),由中点坐标公式可得,d(1,1,0),e(0,1,2),f(1,0,0),|de|,|ef|.当 堂 达 标固 双 基1点a(1,2,1)在x轴上的投影点和在xoy平面上的投影点的坐标分别为()a(1,0,1),(1,2,0)b(1,0,0),(1,2,0)c(1,0,0),(1,0,0)d(1,2,0),(1,2,0)b点a(1,2,1)在x轴上的投影点为(1,0,0)在xoy平面上的投影为(1,2,0)故选b.2已知点a(x,1,2)和点b(2,3,4),且|ab|2,则实数x的值是() 【导学号:07742316】a3或4b6或2c3或4d6或2d依题意,2,x24x120,x6或x2.选d.3已知a(3,2,4),b(5,2,2),则线段ab中点的坐标为_. 【导学号:07742317】(4,0,1)线段ab中点为,即(4,0,1)4设a(4,7,1),b(6,2,z),|ab|11,则z_.5或7依题意,|ab|11,解得z5或

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论