高中数学立体几何习题.doc_第1页
高中数学立体几何习题.doc_第2页
高中数学立体几何习题.doc_第3页
高中数学立体几何习题.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

此文档收集于网络,如有侵权,请联系网站删除APCBOEF16如图,已知O所在的平面,是O的直径,C是O上一点,且,与O所在的平面成角,是中点F为PB中点 (1) 求证: ;(2) 求证:;(3)求三棱锥B-PAC的体积17如图,四面体ABCD中,O、E分别是BD、BC的中点,(1)求证:平面BCD;(2)求异面直线AB与CD所成角的余弦值;(3)求点E到平面ACD的距离18如图,已知棱柱ABCDA1B1C1D1的底面是菱形,且AA1面ABCD,DAB=60,AD=AA1=a,F为棱AA1的中点,M为线段BD1的中点(1)求证:MF面ABCD;(2)求证:MF面BDD1B1(3) 求三棱锥A-BDD1的体积19如图,直三棱柱ABCA1B1C1 中,AC BC 1,ACB 90,AA1 ,D 是A1B1 中点(1)求证C1D 平面A1B ;(2)当点F 在BB1 上什么位置时,会使得AB1 平面C1DF ?并证明你的结论16(1)证明:在三角形PBC中,是中点 F为PB中点APCBOEF所以 EF/BC,所以4分(2) (1)又是O的直径,所以(2)7分由(1)(2)得 8分因 EF/BC ,所以9分(3)因O所在的平面,AC是PC在面ABC内的射影,即为PC与面ABC所成角 , ,PA=AC 11分在中,是中点, 12分 14分17方法一:(1)证明:连结OC在中,由已知可得而即平面(2)解:取AC的中点M,连结OM、ME、OE,由E为BC的中点知直线OE与EM所成的锐角就是异面直线AB与CD所成的角在中,是直角斜边AC上的中线,异面直线AB与CD所成角的余弦值为(3)解:设点E到平面ACD的距离为在中,而点E到平面ACD的距离为18证明:(1)连结AC、BD交于点O,再连结MO , (2)(3)14分19分析:(1)由于C1D 所在平面A1B1C1 垂直平面A1B ,只要证明C1D 垂直交线A1B1 ,由直线与平面垂直判定定理可得C1D 平面A1B(2)由(1)得C1D AB1 ,只要过D 作AB1 的垂线,它与BB1 的交点即为所求的F 点位置(1)证明:如图, ABCA1B1C1 是直三棱柱, A1C1 B1C1 1,且A1C1B1 90又 D 是A1B1 的中点, C1D A1B1 AA1 平面A1B1C1 ,C1D 平面A1B1C1 , AA1 C1D , C1D 平面AA1B1B(2)解:作DE AB1 交AB1 于E ,延长DE 交BB1 于F ,连结C1F ,则AB1 平面C1DF ,点F 即为所求事实上, C1D 平面AA1BB ,AB1 平面AA1B1B , C1D AB1 又AB1 DF ,DF C1D D , AB1 平面C1DF 点评:本题(1)的证明中,证得C1D A1B1 后,由ABCA1B1C1 是直三棱柱知平面C1A1B1 平面AA1B1B ,立得C1D 平面AA1B1B(2)是开放性探索问题,注意采用逆向思维的方法分析问题求函数的极值解:=x2-4=(x-2)(x+2)令=0,解得x=2,或x=-2.下面分两种情况讨论:(1) 当0,即x2,或x-2时;(2) 当0,即-2x2时.当x变化时, ,f(x)的变化情况如下表:x(-,-2)-2(-2,2)2(2,+)+0_0+f(x)单调递增单调递减单调递增因此,当x=-2时,f(x)有极大值,且极大值为f(-2)= ;当x=2时,f(x)有极小值,且极小值为f(2)= 函数的图象如:归纳:求函数y=f(x)极值的方法是:1求,解方程=0,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论