人教A版选修22 1.3.3函数的最大(小)值与导数 教案.doc_第1页
人教A版选修22 1.3.3函数的最大(小)值与导数 教案.doc_第2页
人教A版选修22 1.3.3函数的最大(小)值与导数 教案.doc_第3页
人教A版选修22 1.3.3函数的最大(小)值与导数 教案.doc_第4页
人教A版选修22 1.3.3函数的最大(小)值与导数 教案.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数的最大(小)值与导数【教学目标】1理解函数最值的概念,了解其与函数极值的区别与联系2会求某闭区间上函数的最值【教法指导】本节学习重点:会求某闭区间上函数的最值本节学习难点:理解函数最值的概念,了解其与函数极值的区别与联系【教学过程】复习引入 极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质,但是我们往往更关心函数在某个区间上哪个值最大,哪个值最小?函数的极值与最值有怎样的关系?这就是本节我们要研究的问题解析:请同学思考并回顾以前所学知识并积极回答之.探索新知探究点一求函数的最值思考1如图,观察区间a,b上函数yf(x)的图象,你能找出它的极大值、极小值吗答f(x1),f(x3),f(x5)是函数yf(x)的极小值;f(x2),f(x4),f(x6)是函数yf(x)的极大值思考2观察思考1的函数yf(x),你能找出函数f(x)在区间a,b上的最大值、最小值吗?若将区间改为(a,b),f(x)在(a,b)上还有最值吗?由此你得到什么结论?小结一般地,如果在区间a,b上函数yf(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值,且最值必在端点处或极值点处取得思考3函数的极值和最值有什么区别和联系?答函数的最大值、最小值是比较整个定义区间的函数值得出的,函数的极值是比较极值点附近的函数值得出的,函数的极值可以有多个,但最值只能有一个;极值只能在区间内取得,最值则可以在端点处取得;有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点处取得必定是极值,所以在开区间(a,b)上若存在最值,则必是极值小结求一个函数在闭区间上的最值步骤:1求导,确定函数在闭区间上的极值点2求出函数的各个极值和端点处的函数值3比较大小,确定结论例1求下列函数的最值:(1)f(x)2x312x,x2,3;(2)f(x)xsin x,x0,2x(,)(,)(,)f(x)00f(x)单调递增极大值单调递减极小值单调递增所以函数f(x)的单调递增区间为(,),(,),单调递减区间为(,)因为f(2)8,f(3)18,f()8,f()8;所以当x时,f(x)取得最小值8;当x3时,f(x)取得最大值18.(2)f(x)cos x,令f(x)0,又x0,2,解得x或x.计算得f(0)0,f(2),f(),f().当x0时,f(x)有最小值f(0)0;当x2时,f(x)有最大值f(2).反思与感悟(1)求函数的最值,显然求极值是关键的一环但仅仅是求最值,可用下面简化的方法求得求出导数为零的点比较这些点与端点处函数值的大小,就可求出函数的最大值和最小值(2)若函数在闭区间a,b上连续且单调,则最大、最小值在端点处取得跟踪训练1求下列函数的最值:(1)f(x)x34x4,x0,3;(2)f(x)ex(3x2),x2,5函数f(x)在0,3上的最大值为4,最小值为.(2)f(x)3exexx2,f(x)3ex(exx22exx)ex(x22x3)ex(x3)(x1),在区间2,5上,f(x)ex(x3)(x1)0,即函数f(x)在区间2,5上单调递减,x2时,函数f(x)取得最大值f(2)e2;x5时,函数f(x)取得最小值f(5)22e5.探究点二含参数的函数的最值问题例2已知a是实数,函数f(x)x2(xa)(1)若f(1)3,求a的值及曲线yf(x)在点(1,f(1)处的切线方程(2)求f(x)在区间0,2上的最大值解(1)f(x)3x22ax.因为f(1)32a3,所以a0.又当a0时,f(1)1,f(1)3,所以曲线yf(x)在点(1,f(1)处的切线方程为3xy20.(2)令f(x)0,解得x10,x2.当0,即a0时,f(x)在0,2上单调递增,从而f(x)maxf(2)84a.当2,即a3时,f(x)在0,2上单调递减,从而f(x)maxf(0)0. 当02,即0a3时,f(x)在上单调递减,在上单调递增,从而f(x)max综上所述,f(x)max反思与感悟由于参数的取值不同会导致函数在所给区间上的单调性的变化,从而导致最值的变化所以解决这类问题常需要分类讨论,并结合不等式的知识进行求解跟踪训练2在本例中,区间0,2改为1,0结果如何?从而f(x)maxf(1)1a;当1a0,即a0恒成立,只要f(x)的最小值大于0即可如f(x)0恒成立,只要f(x)的最大值小于0即可以上两种情况特别要小心临界值的取舍,对含参不等式的恒成立问题,求参数范围时,可先分离参数例3设函数f(x)2x39x212x8c,(1)若对任意的x0,3,都有f(x)c2成立,求c的取值范围(2)若对任意的x(0,3),都有f(x)c2成立,求c的取值范围x0,3时,f(x)的最大值为f(3)98c.对任意的x0,3,有f(x)c2恒成立,98cc2,即c9.c的取值范围为(,1)(9,)(2)由(1)知f(x)f(3)98c,98cc2即c1或c9,c的取值范围为(,19,)反思与感悟(1)“恒成立”问题向最值问题转化是一种常见的题型,对于不能分离参数的恒成立问题,直接求含参函数的最值即可(2)此类问题特别要小心“最值能否取得到”和“不等式中是否含等号”的情况,以此来确定参数的范围能否取得“”跟踪训练3设函数f(x)tx22t2xt1(xr,t0)(1)求f(x)的最小值h(t);(2)若h(t)2tm对t(0,2)恒成立,求实数m的取值范围解(1)f(x)t(xt)2t3t1(xr,t0),当xt时,f(x)取最小值f(t)t3t1,即h(t)t3t1.(2)令g(t)h(t)(2tm)t33t1m,由g(t)3t230得t1,t1(不合题意,舍去)当t变化时g(t)、g(t)的变化情况如下表:t(0,1)1(1,2)g(t)0g(t)单调递增1m单调递减对t(0,2),当t1时,g(t)max1m,h(t)2tm对t(0,2)恒成立,也就是g(t)0,对t(0,2)恒成立,只需g(t)max1m1.故实数m的取值范围是(1,)课堂提高1定义在闭区间a,b上的函数yf(x)有唯一的极值点xx0,且y极小值f(x0),则下列说法正确的是()a函数f(x)有最小值f(x0)b函数f(x)有最小值,但不一定是f(x0)c函数f(x)的最大值也可能是f(x0)d函数f(x)不一定有最小值 【答案】a【解析】函数f(x)在闭区间a,b上一定存在最大值和最小值,又f(x)有唯一的极小值f(x0),则f(x0)一定是最小值2已知f(x)x2cosx,x1,1,则导函数f(x)是()a仅有最小值的奇函数b既有最大值又有最小值的偶函数c仅有最大值的偶函数d既有最大值又有最小值的奇函数【答案】d3函数y的最大值为()ae1 be ce2 d.【答案】a【解析】令y0.解得xe.当xe时,y0;当x0.y极大值f(e),在定义域内只有一个极值,所以ymax.4已知函数yx22x3在区间a,2上的最大值为,则a等于()a b.c d.或【答案】c5已知函数,若的图象在处与直线相切(1)求的值;(2)求在上的最大值【解析】(1)由函数的图象在处与直线相切,得即解得(2)由(1)得,定义域为,令,解得,令,得所以在上单调递增,在上单调递减,所以在上的最大值为6已知函数f(x)x2axb,g(x)ex(cxd),若曲线yf(x)和曲线yg(x)都过点p(0,2),且在点p处有相同的切线y4x2.(1)求a,b,c,d的值;(2)若x2时,f(x)kg(x),求k的取值范围【解析】(1)因为曲线yf(x)和曲线yg(x)都过点p(0,2),所以bd2;因为f(x)2xa,故f(0)a4;g(x)ex(cxdc),故g(0)2c4,故c2.从而a4,b2,c2,d2.若1ke2,则2x10,从而当x2,x1)时,f(x)0,即f(x)在2,)上最小值为f(x1)2x12x4x1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论