人教A版选修45 3.3排序不等式 课件(45张).ppt_第1页
人教A版选修45 3.3排序不等式 课件(45张).ppt_第2页
人教A版选修45 3.3排序不等式 课件(45张).ppt_第3页
人教A版选修45 3.3排序不等式 课件(45张).ppt_第4页
人教A版选修45 3.3排序不等式 课件(45张).ppt_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三排序不等式 自主预习 1 顺序和 乱序和 反序和的概念设有两个有序实数组 a1 a2 an b1 b2 bn c1 c2 cn是b1 b2 bn的任意一个排列 1 顺序和 2 乱序和 3 反序和 a1b1 a2b2 anbn a1c1 a2c2 ancn a1bn a2bn 1 anb1 2 排序不等式 排序原理 设a1 a2 an b1 b2 bn为两组实数 c1 c2 cn是b1 b2 bn的任一排列 则 a1c1 a2c2 ancn 当且仅当a1 a2 an或b1 b2 bn时 反序和等于顺序和 a1bn a2bn 1 anb1 a1b1 a2b2 anbn 即时小测 1 已知a b c r 则a3 b3 c3与a2b b2c c2a的大小关系是 a a3 b3 c3 a2b b2c c2ab a3 b3 c3 a2b b2c c2ac a3 b3 c3 a2b b2c c2ad a3 b3 c3 a2b b2c c2a 解析 选b 因为a b c r 不妨设a b c 则a2 b2 c2 由排序不等式得a3 b3 c3 a2b b2c c2a 2 若a b c x y z 则下列各式中值最大的一个是 a ax cy bzb bx ay czc bx cy azd ax by cz 解析 选d 因为a b c x y z 由排序不等式 反序和 乱序和 顺序和 得 顺序和ax by cz最大 3 已知a b c 0 且a2 b2 c2 3 则的最大值是 解析 因为a b c 0 不妨设a b c 则a2 b2 c2 则 当且仅当a b c时等号成立 又a2 b2 c2 3 所以a b c 1 于是的最大值为3 答案 3 知识探究 探究点排序不等式1 使用排序不等式的关键是什么 提示 使用排序不等式 关键是出现有大小顺序的两列数 或者代数式 来探求对应项的乘积的和的大小关系 2 已知两组数1 2 3和4 5 6 试检验它们的顺序和是否最大 反序和是否最小 提示 反序和s1 1 6 2 5 3 4 28 乱序和s 1 4 2 6 3 5 31 s 1 5 2 4 3 6 31 s 1 5 2 6 3 4 29 s 1 6 2 4 3 5 29 顺序和s2 1 4 2 5 3 6 32 由以上计算知s1 s s2 所以顺序和最大 反序和最小 归纳总结 1 对排序不等式的理解排序原理是对不同的两个数组来研究不同的乘积和的问题 能构造的和按数组中的某种 搭配 的顺序被分为三种形式 顺序和 反序和 乱序和 对这三种不同 的搭配形式只需注意是怎样的 次序 两种较为简单的是 顺与反 而乱序和也就是不按 常理 的顺序了 2 排序不等式的本质两实数序列同方向单调 同时增或同时减 时所得两两乘积之和最大 反方向单调 一增一减 时所得两两乘积之和最小 3 排序不等式取等号的条件等号成立的条件是其中一序列为常数序列 即a1 a2 an或b1 b2 b3 bn 4 排序原理的思想在解答数学问题时 常常涉及一些可以比较大小的量 它们之间并没有预先规定大小顺序 那么在解答问题时 我们可以利用排序原理的思想方法 将它们按一定顺序排列起来 继而利用不等关系来解题 因此 对于排序原 理 我们要记住的是处理问题的这种思想及方法 同时要学会善于利用这种比较经典的结论来处理实际问题 类型一利用排序不等式求最值 典例 设a b c为任意正数 求的最小值 解题探究 本例中要利用排序原理求解最小值 关键是什么 提示 关键是找出两组有序数组 然后根据反序和 乱序和 顺序和求解最小值 解析 不妨设a b c 则a b a c b c 由排序不等式得 上述两式相加得 2 3 即 当且仅当a b c时 取最小值 方法技巧 利用排序原理求最值的方法技巧求最小 大 值 往往所给式子是顺 反 序和式 然后利用顺 反 序和不小 大 于乱序和的原理适当构造出一个或二个乱序和从而求出其最小 大 值 变式训练 1 已知两组数1 2 3和4 5 6 若c1 c2 c3是4 5 6的一个排列 则1c1 2c2 3c3的最大值是 最小值是 解析 由反序和 乱序和 顺序和知 顺序和最大 反序和最小 故最大值为32 最小值为28 答案 3228 2 设0 a b c且abc 1 试求的最小值 解析 令s 由已知可得 两式相加得 所以s 即的最小值为 类型二利用排序不等式证明不等式 典例 已知a b c都是正数 求证 解题探究 本例不等式的两端如何分别构造 变形 提示 将右端变形为将左端构造为的形式 证明 由于a b c的对称性 不妨设a b c 0 则 因而又a5 b5 c5 由排序不等式 得 又由不等式性质 知a2 b2 c2 根据排序不等式 得 由不等式的传递性知 延伸探究 本例中若将要证明的不等式改为如何证明呢 证明 不妨设a b c 则 bc ca ab 由排序原理 得即 a b c 因为a b c为正数 所以abc 0 a b c 0 所以 abc 方法技巧 利用排序不等式证明不等式的策略 1 利用排序不等式证明不等式时 若已知条件中已给出两组量的大小关系 则需要分析清楚顺序和 乱序和及反序和 利用排序不等式证明即可 2 在排序不等式的条件中 需要限定各数值的大小关系 如果对于它们之间并没有预先规定大小顺序 那么在解答问题时 我们要根据各字母在不等式中的地位的对称性将它们按一定顺序排列起来 进而用不等关系来解题 变式训练 设x y z r 且x y z 1 则p 与1的大小关系为 a p 1b p 1c p 1d p 1 解析 选c 由x y z r 且x y z 1 不妨设x y z 则x2 y2 z2 由排序不等式 x y z 1 当且仅当x y z 时等号成立 所以p 1 补偿训练 已知a b c为正数 用排序不等式证明 2 a3 b3 c3 a2 b c b2 a c c2 a b 证明 取两组数a b c a2 b2 c2 不管a b c的大小如何 a3 b3 c3都是顺序和 而a2b b2c c2a及a2c b2a c2b都是乱序和 因此 a3 b3 c3 a2b b2c c2a a3 b3 c3 a2c b2a c2b 所以2 a3 b3 c3 a2 b c b2 c a c2 a b 自我纠错判断两数的大小 典例 一般地 对于n个正数a1 a2 an 几何平均数gn 算术平均数an 利用排序不等式判断gn an的大小关系 失误案例 分析解题过程 找出错误之处 并写出正确答案 提示 错误的根本原因是忽视了等号成立的条件 实际上本题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论