人教A版选修45 第3讲柯西不等式与排序不等式 章末分层突破 学案.doc_第1页
人教A版选修45 第3讲柯西不等式与排序不等式 章末分层突破 学案.doc_第2页
人教A版选修45 第3讲柯西不等式与排序不等式 章末分层突破 学案.doc_第3页
人教A版选修45 第3讲柯西不等式与排序不等式 章末分层突破 学案.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

章末分层突破自我校对一般形式的柯西不等式柯西不等式的三角形式反序和顺序和排序原理 利用柯西不等式证明简单不等式柯西不等式形式优美、结构易记,因此在解题时,根据题目特征灵活运用柯西不等式,可证明一些简单不等式已知a,b,c是实数,且abc1,求证:4.【规范解答】因为a,b,c是实数,且abc1,令m(,),n(1,1,1),则|mn|2()2,|m|2|n|23(13a1)(13b1)(13c1)313(abc)348.|mn|2|m|2|n|2,()248,4.再练一题1设a,b,x,y都是正数,且xyab,求证:.【证明】a,b,x,y都大于0,且xyab.由柯西不等式,知(ax)(by)2(ab)2.又axby2(ab)0,所以.排序原理在不等式证明中的应用应用排序不等式的技巧在于构造两个数组,而数组的构造应从需要入手 设计,这一点应从所要证的式子的结构观察分析,再给出适当的数组已知a,b,c为正实数,求证:abc.【规范解答】由于不等式关于a,b,c对称,可设abc0.于是a2b2c2,.由排序不等式,得反序和乱序和,即a2b2c2a2b2c2,及a2b2c2a2b2c2.以上两个同向不等式相加再除以2,即得原不等式再练一题2设a,b,cr,求证:a5b5c5a3bcb3acc3ab.【证明】不妨设abc0,则a4b4c4,运用排序不等式有:a5b5c5aa4bb4cc4ac4ba4cb4.又a3b3c30,且abacbc0,所以a4bb4cc4aa3abb3bcc3caa3bcb3acc3ab,即a5b5c5a3bcb3acc3ab.利用柯西不等式、排序不等式求最值有关不等式的问题往往要涉及到对式子或量的范围的限制,柯西不等式、排序不等式为我们通过不等式求最值提供了新的有力工具,但一定要注意取等号的条件能否满足设a,b,c为正实数,且a2b3c13,求的最大值【规范解答】由于a,b,c为正实数,根据柯西不等式,知(a2b3c)()2()2()22()2,()2,即,当且仅当时取等号又a2b3c13,当a9,b,c时,取得最大值为.再练一题3已知实数a,b,c,d,e满足a2b2c2d2e216.求abcde的最大值. 【导学号:32750060】【解】abcde4,所以abcde的最大值是4.1已知关于x的不等式|xa|b的解集为x|2x4(1)求实数a,b的值;(2)求的最大值【解】(1)由|xa|b,得bax0,b0,c0,函数f(x)|xa|xb|c的最小值为4.(1)求abc的值;(2)求a2b2c2的最小值【解】(1)因为f(x)|xa|xb|c|(xa)(xb)|c|ab|c,当且仅当axb时,等号成立又a0,b0,所以|ab|ab,所以f(x)的最小值为abc.又已知f(x)的最小值为4,所以abc4.(2)由(1)知abc4,由柯西不等式,得(4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论