




已阅读5页,还剩28页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 2 2二次函数的性质与图象 一 二 一 二 二 二次函数的性质与图象 问题思考 1 二次函数y ax2 c在y轴左侧是减函数 在右侧是增函数 对吗 提示 不对 当a 0时 函数在y轴左侧是减函数 在右侧是增函数 当a 0时 函数在y轴左侧是增函数 在右侧是减函数 2 函数y ax2 bx c为奇函数的条件是什么 提示 当a c 0 且b 0时 y ax2 bx c bx是奇函数 故函数y ax2 bx c为奇函数的条件是a c 0 b 0 一 二 3 如何求二次函数在闭区间上的最值 提示 对于二次函数y ax2 bx c a 0 的最值问题 首先应采用配方法 化为y a x h 2 k a 0 的形式 其解法是 抓住 三点一轴 数形结合 该讨论时要讨论 这里的 三点 指的是区间的两个端点和区间中点 一轴 指的是对称轴 对于二次函数f x a x h 2 k a 0 在区间 p q 上的最值问题可作如下讨论 1 对称轴x h在区间 p q 的左侧 即当h p时 f x max f q f x min f p 2 对称轴x h在区间 p q 之间 即当p h q时 f x min f h k 3 对称轴x h在区间 p q 的右侧 即当h q时 f x max f p f x min f q 一 二 4 填写下表 一 二 一 二 一 二 一 二 一 二 5 做一做 1 二次函数y 2x2 x 1图象的对称轴和顶点坐标分别是 答案 b 2 函数f x ax2 4 a 1 x 3在 2 内单调递减 则a的取值范围是 思考辨析判断下列说法是否正确 正确的在后面的括号里打 错误的打 1 二次函数y 3x2与y轴不相交 2 二次函数y ax2 bx c的图象开口一定向上 3 将函数y f x a a 0 的图象向左平移a个单位长度即得到y f x 的图象 4 所有的二次函数在定义域r上一定有最大值和最小值 5 如果二次函数f x 的图象关于直线x a对称 则f x 一定满足关系式f a x f a x 6 如果二次函数f x 满足关系式f x f 2a x 则说明该二次函数f x 图象的对称轴为x 2a 答案 1 2 3 4 5 6 探究一 探究二 探究三 探究四 思想方法 二次函数的定义 分析 根据二次函数的定义 只要保证二次项系数2 m 0且x的指数m2 m 4 2即可 探究一 探究二 探究三 探究四 思想方法 反思感悟二次函数y ax2 bx c a 0 当b c 0时 函数变为y ax2 a 0 它的图象是一条以原点为顶点 y轴为对称轴的抛物线 另外二次函数有以下几种形式 1 顶点式 f x a x h 2 k a 0 其中 h k 为其图象的顶点坐标 2 交点式 也称两根式 f x a x x1 x x2 a 0 其中x1 x2是其图象与x轴交点的横坐标 3 一般式 f x ax2 bx c a 0 探究一 探究二 探究三 探究四 思想方法 二次函数的图象和性质 例2 已知函数f x x2 2x 3 1 用配方法求出函数图象的对称轴 顶点坐标 并作出图象 指出其单调区间 2 由图象写出当y 0时x的取值范围 分析 本题考查配方法和二次函数的图象与性质 解题的关键是配方 完成配方后再结合图象研究其性质 探究一 探究二 探究三 探究四 思想方法 解 1 f x x2 2x 3 x2 2x 3 x 1 2 4 则该函数图象的对称轴为x 1 顶点坐标为 1 4 其图象如图所示 其单调增区间为 1 单调减区间为 1 2 由图象知当y 0时 x 1或x 3 当y 0时 1 x 3 故当y 0时x的取值范围是 1 3 探究一 探究二 探究三 探究四 思想方法 反思感悟1 根据配方法及函数的性质画函数图象 可以直接选取关键点 减少了选点的盲目性 使画图更简便 使图象更精确 2 二次函数y ax2 bx c a 0 与x轴交点的横坐标就是对应的一元二次方程ax2 bx c 0 a 0 的根 二次函数图象在x轴上方部分对应的x取值范围即为不等式ax2 bx c 0 a 0 的解 同样二次函数图象在x轴下方部分对应的x取值范围 即为不等式ax2 bx c 0 a 0 的解 探究一 探究二 探究三 探究四 思想方法 变式训练1设函数f x ax2 bx c a b c r a 0 若a c 则如图所示的图象不可能为y f x 的图象的是 解析 由a c可知函数图象与x轴的两交点 包含交点重合的情况 的横坐标乘积为1 由四个选项看 图象与x轴均有交点 记两交点的横坐标分别为x1 x2 若只有一个交点 则x1 x2 因为a c 所以x1x2 1 比较四个选项 发现选项d中x11 所以d不满足 故选d 答案 d 探究一 探究二 探究三 探究四 思想方法 二次函数单调性与对称性的应用 例3 1 若函数f x x2 2mx 1在区间 1 2 上是单调的 则实数m的取值范围是 2 如果函数f x x2 bx 1对任意实数x都有f 2 x f 2 x 求f 1 f 2 的值 1 解析 函数f x x2 2mx 1 x m 2 1 m2 其图象的对称轴为x m 若函数在 1 2 上单调 说明对称轴不在区间 1 2 内部 故有 m 1或 m 2 得m 1或m 2 答案 m 1或m 2 2 解 由题意知 函数图象关于x 2对称 故 2 得b 4 所以f x x2 4x 1 f 1 1 4 1 2 f 2 4 8 1 3 探究一 探究二 探究三 探究四 思想方法 反思感悟1 利用二次函数的单调性求参数的取值范围的方法 已知函数的单调性 求函数解析式中参数的范围 是函数单调性的逆向思维问题 解答此类问题的关键在于先找出函数图象的对称轴 通过集合间的关系来建立变量间的关系 2 函数的对称性 1 若函数y f x 的图象关于直线x a对称 则f a x f a x 对任意x都成立 这个关系式我们也常常表示为 f x f 2a x 也说明函数图象关于直线x a对称 2 若函数f x 对任意x有f a x f b x 则函数f x 图象的对称轴为 探究一 探究二 探究三 探究四 思想方法 1 若将上题 1 中条件 在区间 1 2 上是单调的 改为 在 1 2 上是单调递减的 m的取值又将如何 2 如果函数f x x2 bx c对于任意实数t都有f 2 t f 2 t 那么 a f 2 f 1 f 4 b f 1 f 2 f 4 c f 4 f 2 f 1 d f 2 f 4 f 1 解析 1 由新变换的条件可知对称轴x m 2即m 2 2 由f 2 t f 2 t 可知 抛物线y x2 bx c的对称轴是直线x 2 由函数的单调性可得f 2 f 1 f 4 答案 1 m 2 2 a 探究一 探究二 探究三 探究四 思想方法 二次函数的最值 值域 例4 已知函数f x x2 2ax 2 1 当a 1时 求函数f x 在区间 5 5 上的最大值和最小值 2 用a表示出函数f x 在区间 5 5 上的最值 分析 将原函数先配方 对于第 2 问还要结合图象进行分类讨论 解 1 当a 1时 f x x2 2x 2 x 1 2 1 因为1 5 5 故当x 1时 f x 取得最小值 f x min f 1 1 当x 5时 f x 取得最大值 f x max f 5 5 1 2 1 37 2 函数f x x2 2ax 2 x a 2 2 a2的图象开口向上 对称轴为x a 当 a 5 即a 5时 函数在区间 5 5 上是增函数 所以f x max f 5 27 10a f x min f 5 27 10a 探究一 探究二 探究三 探究四 思想方法 当 5 a 0 即0 a 5时 函数图象如图 所示 由图象可得f x min f a 2 a2 f x max f 5 27 10a 当0 a 5 即 5 a 0时 函数图象如图 所示 由图象可得f x max f 5 27 10a f x min f a 2 a2 当 a 5 即a 5时 函数在区间 5 5 上是减函数 所以f x min f 5 27 10a f x max f 5 27 10a 综上可得 当a 5时 f x 在区间 5 5 上的最大值为27 10a 最小值为27 10a 探究一 探究二 探究三 探究四 思想方法 当0 a 5时 f x 在区间 5 5 上的最大值为27 10a 最小值为2 a2 当 5 a 0时 f x 在区间 5 5 上的最大值为27 10a 最小值为2 a2 当a 5时 f x 在区间 5 5 上的最大值为27 10a 最小值为27 10a 探究一 探究二 探究三 探究四 思想方法 反思感悟对于二次函数y ax2 bx c a 0 的最值问题 首先应采用配方法 化为y a x h 2 k的形式 1 求二次函数在定义域r上的最值 2 求二次函数在闭区间上的最值共有三种类型 顶点固定 区间也固定 此种类型是较为简单的一种 只要找到对称轴 画出图象 将区间标出 最值一目了然 顶点变动 区间固定 这种类型是比较重要的 在高考题中多次出现 主要是讨论顶点横坐标即对称轴在区间左侧 在区间内部以及在区间右侧等情况 然后根据不同情况写出最值 顶点固定 区间变动 此种情况用的较少 在区间里含有参数 根据区间分别在对称轴的左侧 包含对称轴以及在对称轴右侧进行讨论 探究一 探究二 探究三 探究四 思想方法 变式训练2设f x x2 4x 4 x t t 1 t r 求函数f x 的最小值g t 的解析式 分析 本题属于轴定区间动的情形 分三种情况讨论f x 的最小值 解 f x x 2 2 8 x t t 1 当2 t t 1 即1 t 2时 g t f 2 8 当t 12时 f x 在 t t 1 上是增函数 g t f t t2 4t 4 探究一 探究二 探究三 探究四 思想方法 数形结合思想在二次函数中的应用 典例 若方程x2 2x 3 a有两个不相等的实数根 求实数a的取值范围 思路点拨 令f x x2 2x 3 g x a 将方程有两个不相等的实数根转化为两个函数的图象有两个不同的交点 探究一 探究二 探究三 探究四 思想方法 解 令f x x2 2x 3 g x a 作出f x 的图象如图所示 f x 与g x 图象的交点个数即为方程x2 2x 3 a根的个数 由图可知 当a 4时 f x 与g x 有两个公共点 即方程x2 2x 3 a有两个实根 综上所述 当方程x2 2x 3 a有两个实数根时 实数a的取值范围是 4 探究一 探究二 探究三 探究四 思想方法 方法点睛若讨论f x g x 根的情况 不妨适当变形后令y f x 与y g x 两个函数 然后把方程根的问题转化为两个函数图象交点问题 体现了数与形的完美结合 探究一 探究二 探究三 探究四 思想方法 变式训练已知方程x2 4 x 5 m有四个全不相等的实根 则实数m的取值范围是 1 函数y x2 2的最值情况为 a 有最小值2 无最大值b 有最大值2 无最小值c 有最小值0 无最大值d 有最大值2 有最小值0答案 b2 已知二次函数y ax2 bx 1的图象的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汉语历史语音变迁试题及答案
- 公司战略制定中的关键风险因素试题及答案
- 建立有效风险管理系统以支持战略目标试题及答案
- 汉语考试的未来发展试题及答案思考
- 实践应用的2025年税法考试试题及答案
- 经典VB试题概览及答案分享
- 解析2025年Photoshop图形编辑试题及答案
- 2025年远程医疗推动偏远地区医疗人才培养模式创新报告
- 现代汉语语音特征试题及答案
- 影视工业化2025:全流程制作质量控制与效率分析报告
- 涉密文件借阅登记表
- 脊髓损伤康复讲义
- 布草洗涤服务方案完整版
- 气体安全知识培训(72张)课件
- 电子类产品结构设计标准-
- 音乐神童莫扎特详细介绍和作品欣赏课件
- 共线向量与共面向量全面版课件
- JJG(晋) 22-2021 车用甲醇燃料加注机检定规程
- 《红楼梦:金陵十二钗判词赏析》示范PPT课件
- 起重信号工、司索工安全教育培训试题带答案
- 大连市住宅小区物业收费等级标准
评论
0/150
提交评论