人教B版必修4 3.2.2半角的正弦、余弦和正切 课件(31张).pptx_第1页
人教B版必修4 3.2.2半角的正弦、余弦和正切 课件(31张).pptx_第2页
人教B版必修4 3.2.2半角的正弦、余弦和正切 课件(31张).pptx_第3页
人教B版必修4 3.2.2半角的正弦、余弦和正切 课件(31张).pptx_第4页
人教B版必修4 3.2.2半角的正弦、余弦和正切 课件(31张).pptx_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3 2 2半角的正弦 余弦和正切 1 了解由二倍角的变形公式推导半角的正弦 余弦和正切公式的过程 2 掌握半角的正弦 余弦和正切公式 能正确运用这些公式进行简单的三角函数式的化简 求值和恒等式的证明 半角公式半角公式的推导过程如下表 答案 c 答案 b 答案 a 讨论半角的正弦 余弦 正切公式中的无理式前的符号剖析 1 当给出的角是某一象限角时 可根据下表决定符号 题型一 题型二 题型三 题型一 题型二 题型三 题型一 题型二 题型三 分析先由sin 的值求出cos 的值 然后利用半角公式求解 题型一 题型二 题型三 反思在套用公式时 一定注意求解顺序和所用到的角的范围问题 其次还要注意选用公式要灵活 题型一 题型二 题型三 题型一 题型二 题型三 答案 1 d 2 d 题型一 题型二 题型三 分析解答本题可将切化弦 然后利用半角 倍角公式化简 题型一 题型二 题型三 题型一 题型二 题型三 反思证明三角恒等式的实质是消除等式两边的差异 有目的地化繁为简 左右归一或变更论证 对恒等式的证明 应遵循化繁为简的原则 从左边推到右边或从右边推到左边 也可以用左右归一 变更论证等方法 常用定义法 化弦法 化切法 拆项拆角法 1 的代换法 公式变形法 要熟练掌握基本公式 善于从中选择巧妙简捷的方法 题型一 题型二 题型三 题型一 题型二 题型三 题型一 题型二 题型三 题型一 题型二 题型三 题型一 题型二 题型三 答案 c 1 2 3 4 5 6 答案 a 1 2 3 4 5 6 答案 d 1 2 3 4 5 6 答案 b 1 2 3 4 5 6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论