2.3《确定二次函数的表达式》教学设计.docx_第1页
2.3《确定二次函数的表达式》教学设计.docx_第2页
2.3《确定二次函数的表达式》教学设计.docx_第3页
2.3《确定二次函数的表达式》教学设计.docx_第4页
2.3《确定二次函数的表达式》教学设计.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.3 确定二次函数的表达式 教学设计(北师大版九年级下册)东源县蓝口中学 潘石源课题2.3 确定二次函数的表达式教学目标1. 体会确定二次函数表达式所需要的条件;2. 会用待定系数法确定二次函数的表达式。重点根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式。难点 根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式。教学过程一、复习旧知,引入新课1.二次函数表达式的一般形式是什么? y=ax+bx+c (a,b,c为常数,a 0)2.二次函数表达式的顶点式是什么? (a 0).3.若二次函数y=ax+bx+c(a0)与x轴两交点为(,0),( ,0)则其函数表达式可以表示成什么形式? (a 0).4.我们在用待定系数法确定一次函数y=kx+b(k,b为常数,k0)的关系式时,通常需要 个独立的条件;确定反比例函数(k0)的关系式时,通常只需要 个条件.教学过程教学过程教学过程教学过程教学过程如果要确定二次函数的关系式y=ax+bx+c (a,b,c为常数,a 0),通常又需要几个条件 ?(学生思考讨论后,回答)设计意图:利用类比的方法学习待定系数法确定二次函数表达式二、探究新知1、引入情景例题: 如图2-7是一名学生推铅球时,铅球行进高度y(m)与水平距离x(m)的图象,你能求出其表达式吗?分析:要求y与x之间的关系式,首先应观察图象,确定函数的类型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数即可此题设二次函数的顶点坐标式进行求解较为简便,学生较易接受;如学生通过找(10,0)在抛物线上的对称点(-2,0),用交点式 (a 0)求解或用其他方法求解均可. 解:根据图象是一抛物线且顶点坐标为(4,3),因此设它的关系式为,又图象过点(10,0),解得 ,图象的表达式为. 想一想:确定二次函数的表达式需要几个条件?小结:确定二次函数的关系式y=ax+bx+c (a,b,c为常数,a 0),通常需要 个条件; 当知道顶点坐标(h,k)和知道图象上的另一点坐标两个条件,用顶点式可以确定二次函数的关系式.二、例题教学例1 已知二次函数y=ax2+c的图象经过点(2,3)和(1,3),求出这个二次函数的表达式. 分析:二次函数y=ax2+c中只需确定a,c两个系数,需要知道两个点坐标,因此此题只要把已知两点代入即可.解:将点(2,3)和(1,3)分别代入二次函数y=ax2+c中,得 解这个方程组,得 所求二次函数表达式为:y=2x25.三、“做一做”,深入探导 例 已知二次函数的图象与y轴交点的纵坐标为1,且经过点(2,5)和(-2,13),求这个二次函数的表达式.目的:此例求二次函数的表达式,一方面让学生深入探究根据不同的条件灵活选用二次函数的不同形式,通过待定系数法求出函数关系式,另一方面让学生通过实践感受到二次函数一般式y=ax+bx+c确定二次函数需要三个条件但由于这个二次函数图象与y轴交点的纵坐标为1,所以c=1,因此可设y=ax+bx+1把已知的二点代入关系式求出a,b的值即可. 教学注意事项:学生可能会根据条件,设二次函数的解析式y=ax+bx+c,把点(0,1),(2,5),(-2,13)代入,用三元一次方程组解决,这对一些学生可能有一定的困难,可通过小组合作交流、个别辅导等形式解决.解法1 解:因为抛物线与y轴交点纵坐标为1,所以设抛物线关系式为,图象经过点(2,5)和(-2,13)解得:a=2,b=-2.这个二次函数关系式为 .解法2 解:设抛物线关系式为 y=ax+bx+c ,由题意可知,图象经过点(0,1),(2,5)和(-2,13),解方程组得:a=2,b=-2,c=1.这个二次函数关系式为 想一想在什么情况下,一个二次函数只知道其中两点就可以确定它的表达式?小结:1.用顶点式确定二次函数关系式,当知道顶点(h,k)坐标时,那么再知道图象上的另一点坐标,就可以确定这个二次函数的关系式. 2. 用一般式y=ax+bx+c确定二次函数时,如果系数a,b,c中有两个是未知的,知道图象上两个点的坐标,也可以确定二次函数的表达式.如果系数a,b,c中三个都是未知的,这个我们将在下节课中进行研究.四、巩固练习,知识延伸1.已知二次函数的图象顶点是(-1,1),且经过点(1,-3),求这个二次函数的表达式.2. 已知二次函数y=x+bx+c的图象经过点(1,1)与(2,3)两点.求这个二次函数的表达式.答案:1.用顶点式;2.;目的:四个练习旨在对学生求二次函数表达式的掌握情况进行反馈,以便及时调整教学进程四个不同类型的问题由浅入深,学生能从不同角度掌握求二次函数的方法对于练习题3,设抛物线的三种表达式都可以求解,应给学生有充分的交流时间,让学生体会到这题用交点式求解更为简便.可以形对于练习题,教师可引导学生分析,并教学生要学会建立适当的直角坐标系,利用图象分析问题,体会数形结合方法的重要性学生若出现解题格式不规范的情况,教师应纠正并给予示范,训练学生规范答题的习惯五、课堂小结本节课主要学习了怎样确定二次函数的表达式,在确定二次函数的表达式时可以用待定系数法,即先设出二次函数的解析式,再根据题目条件(根据图象或已知点)列出方程(组),解方程组求出待确定的系数,最后答(把求出的系数代回关系式中写出关系式).在解题时应灵活应用二次函数的三种形式:一般式,顶点式,交点式,以便在用待定系数法求解二次函数表达式时减少未知数的个数,简化运算过程.因此

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论