




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章导数及其应用-小结与复习 - 学 案一、学习目标1、进一步理导数的概念,掌握导数在研究函数单调性及极值和最值中的应用,完善学生对数的认识。 2、理解导数和定积分中体现的数学思想“以直代曲”;二、自主学习(1).知识框图(2)课前小测1若函数yx22bx6在(2,8)内是增函数,则()ab0 bb2答案a2已知yasin xsin 3x在x处有极值,则() aa2 ba2ca da0答案b3设函数g(x)x(x21),则g(x)在区间0,1上的最小值为()a1 b0 c d.答案c解析g(x)x3x,由g(x)3x210,解得x1,x2(舍去)当x变化时,g(x)与g(x)的变化情况如下表:x01g(x)0g(x)0极小值0所以当x时,g(x)有最小值g.4.设函数f(x)在定义域内可导,yf(x)的图象如图所示,则导函数yf(x)的图象可能为()答案d解析应用函数的单调性与其导函数的正负关系来判断导函数的图象5若f(x)在(a,b)内存在导数,则“f(x)0”是“f(x)在(a,b)内单调递减”的 条件答案充分不必要解析对于导数存在的函数f(x),若f(x)0,则f(x)在区间(a,b)内单调递减,反过来,函数f(x)在(a,b)内单调递减,不一定恒有f(x)0,如f(x)x3在r上是单调递减的,但f(x)0.三、合作探究题型一函数与其导函数之间的关系例1对正整数n,设曲线yxn(1x)在x2处的切线与y轴交点的纵坐标为an,则数列的前n项和的公式是 答案2n12解析由ky|x22n1(n2),得切线方程为y2n2n1(n2)(x2),令x0,求出切线与y轴交点的纵坐标为y0(n1)2n,所以2n,则数列的前n项和sn2n12.反思与感悟找切点,求斜率是求切线方程的关键跟踪训练1如图,曲线yf(x)上任一点p的切线pq交x轴于q,过p作pt垂直于x轴于t,若ptq的面积为,则y与y的关系满足()ayy byy cyy2 dy2y答案d解析sptqy|qt|,|qt|,q(x,0),根据导数的几何意义,kpqyy2y.故选d.题型二利用导数研究函数的单调性、极值、最值例2已知函数f(x)ax3(a1)x248(a2)xb的图象关于原点成中心对称(1)求a,b的值;(2)求f(x)的单调区间及极值;(3)当x1,5时,求函数的最值解函数f(x)的图象关于原点成中心对称,则f(x)是奇函数,f(x)f(x),得ax3(a1)x248(a2)xbax3(a1)x248(a2)xb,于是2(a1)x2b0恒成立,解得a1,b0;(2)由(1)得f(x)x348x,f(x)3x2483(x4)(x4),令f(x)0,得x14,x24,令f(x)0,得4x0,得x4.f(x)的递减区间为(4,4),递增区间为(,4)和(4,),f(x)极大f(4)128,f(x)极小f(4)128.(3)由(2)知,函数在1,4上单调递减,在4,5上单调递增,对f(4)128,f(1)47,f(5)115,所以函数的最大值为47,最小值为128.小结(1)讨论函数的单调性首先要求出函数的定义域,在定义域内解f(x)0得增区间,解f(x)0得减区间(2)求极值时一般需确定f(x)0的点和单调性,对于常见连续函数,先确定单调性即可得极值点,当连续函数的极值点只有一个时,相应的极值点必为函数的最值点(3)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值可不再作判断,只需要直接与端点的函数值比较即可获得跟踪训练2已知函数yax3bx2,当x1时,有极大值3.(1)求a,b的值;(2)求函数的极小值;(3)求函数在1,1的最值解y3ax22bx,当x1时,y|x13a2b0,y|x1ab3,即,a6,b9.(2)y6x39x2,y18x218x,令y0,得x0,或x1,y极小值y|x00.(3)由(1)知,函数yf(x)6x39x2,又f(1)15,f(0)0,f(1)3,所以函数的最大值为15,最小值为0.题型三导数的综合应用例3已知函数f(x)x3ax1.(1)若f(x)在实数集r上单调递增,求a的取值范围;(2)是否存在实数a,使f(x)在(1,1)上单调递减,若存在,求出a的取值范围,若不存在,请说明理由解(1)f(x)3x2a,因为f(x)在r上是增函数,所以f(x)0在r上恒成立即3x2a0在r上恒成立即a3x2,而3x20,所以a0.当a0时,f(x)x31在r上单调递增,符合题意所以a的取值范围是(,0(2)假设存在实数a,使f(x)在(1,1)上单调递减,则f(x)0在(1,1)上恒成立即3x2a0在(1,1)上恒成立,即a3x2,又因为在(1,1)上,03x23,所以a3.当a3时,f(x)3x23,在(1,1)上,f(x)0,所以f(x)在(1,1)上单调递减,即a3符合题意,所以存在实数a,使f(x)在(1,1)上单调递减,且a的取值范围是3,)反思与感悟在已知函数f(x)是增函数(或减函数)求参数的取值范围时,应令f(x)0(或f(x)0)恒成立,解出参数的取值范围(一般可用不等式恒成立来求解),然后检验参数的取值能否使f(x)恒等于0,若不能恒等于0,则参数的这个值应舍去;若f(x)能恒等于0,则由f(x)0(或f(x)0)恒成立解出的参数的取值范围来确定跟踪训练3(1)若函数f(x)4x3ax3的单调递减区间是,则实数a的值是多少?(2)若函数f(x)4x3ax3在上是单调函数,则实数a的取值范围为多少?解(1)f(x)12x2a,f(x)的单调递减区间为,x为f(x)0的两个根,a3.(2)若f(x)在上为单调增函数,则f(x)0在上恒成立,即12x2a0在上恒成立,a12x2在上恒成立,a(12x2)min0.当a0时,f(x)12x20恒成立(只有x0时f(x)0)a0符合题意若f(x)在上为单调减函数,则f(x)0在上恒成立,即12x2a0在上恒成立,a12x2在上恒成立,a(12x2)max3.当a3时,f(x)12x233(4x21)0恒成立(且只有x时f(x)0)因此,a的取值范围为a0或a3.四、自主小测1若函数yx3x2mx1是r上的单调函数,则实数m的取值范围是()a. b.c. d.2设f(x)是函数f(x)的导函数,将yf(x)和yf(x)的图象画在同一个直角坐标系中,不可能正确的是()3设f(x)、g(x)是定义在r上的恒大于0的可导函数,且f(x)g(x)f(x)g(x)0,则当axf(b)g(b) bf(x)g(a)f(a)g(x)cf(x)g(b)f(b)g(x) df(x)g(x)f(a)g(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商办贷款合同范本
- 干货产品代销合同范本
- 工厂开挖基地合同范本
- 健身业务合同范本
- 家庭酒馆配送合同范本
- 工厂对接酒店合同范本
- 木材成品销售合同范本
- 私人转让商铺合同范本
- 船舶制造设备更新提质项目可行性研究报告模板-备案拿地
- 特价香蕉售卖合同范本
- 2025年天翼云解决方案架构师认证考试指导题库-下(多选、判断题)
- 道路工程材料第7版 课件全套 -孙大权 0-绪论-6 无机结合料稳定材料
- 数学新课标培训汇报
- 孕优项目培训
- 二零二五版OEM代工项目知识产权保护合同3篇
- 外卖小哥的交通安全课件
- 生态农业开发授权委托书样本
- 糖尿病入院宣教护理
- 招聘与录用(第3版)课件全套 王丽娟 第1-8章 概述、招聘前的理论准备工作 -录用与招聘评估
- 黄色中国风家乡介绍山西
- 扬州树人学校2024-2025七年级上学期9月月考数学试卷及答案
评论
0/150
提交评论