




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章导数及其应用1.4 习题课 - 学 案一、学习目标提高学生综合、灵活运用导数的知识解决有关函数问题的能力 二、自主学习1. 知识 络导 数导数的概念导数的运算导数的应用导数的几何意义、物理意义函数的单调性函数的极值函数的最值常见函数的导数导数的运算法则2.自主小测1若函数yx22bx6在(2,8)内是增函数,则()ab0 bb2答案a2已知yasin xsin 3x在x处有极值,则() aa2 ba2ca da0答案b3设函数g(x)x(x21),则g(x)在区间0,1上的最小值为()a1 b0 c d.答案c解析g(x)x3x,由g(x)3x210,解得x1,x2(舍去)当x变化时,g(x)与g(x)的变化情况如下表:x01g(x)0g(x)0极小值0所以当x时,g(x)有最小值g.4.设函数f(x)在定义域内可导,yf(x)的图象如图所示,则导函数yf(x)的图象可能为()答案d解析应用函数的单调性与其导函数的正负关系来判断导函数的图象三、合作探究 题型一函数与其导函数之间的关系例1对正整数n,设曲线yxn(1x)在x2处的切线与y轴交点的纵坐标为an,则数列的前n项和的公式是 答案2n12解析由ky|x22n1(n2),得切线方程为y2n2n1(n2)(x2),令x0,求出切线与y轴交点的纵坐标为y0(n1)2n,所以2n,则数列的前n项和sn2n12.反思与感悟找切点,求斜率是求切线方程的关键跟踪训练1如图,曲线yf(x)上任一点p的切线pq交x轴于q,过p作pt垂直于x轴于t,若ptq的面积为,则y与y的关系满足()ayy byy cyy2 dy2y答案d解析sptqy|qt|,|qt|,q(x,0),根据导数的几何意义, kpqyy2y.故选d. 题型二利用导数研究函数的单调性、极值、最值例2已知函数f(x)ax3(a1)x248(a2)xb的图象关于原点成中心对称(1)求a,b的值;(2)求f(x)的单调区间及极值;(3)当x1,5时,求函数的最值解函数f(x)的图象关于原点成中心对称,则f(x)是奇函数,f(x)f(x),得ax3(a1)x248(a2)xbax3(a1)x248(a2)xb,于是2(a1)x2b0恒成立,解得a1,b0;(2)由(1)得f(x)x348x,f(x)3x2483(x4)(x4),令f(x)0,得x14,x24,令f(x)0,得4x0,得x4.f(x)的递减区间为(4,4),递增区间为(,4)和(4,),f(x)极大f(4)128,f(x)极小f(4)128.(3)由(2)知,函数在1,4上单调递减,在4,5上单调递增,对f(4)128,f(1)47,f(5)115,所以函数的最大值为47,最小值为128.小结(1)讨论函数的单调性首先要求出函数的定义域,在定义域内解f(x)0得增区间,解f(x)0得减区间(2)求极值时一般需确定f(x)0的点和单调性,对于常见连续函数,先确定单调性即可得极值点,当连续函数的极值点只有一个时,相应的极值点必为函数的最值点(3)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值可不再作判断,只需要直接与端点的函数值比较即可获得跟踪训练2已知函数yax3bx2,当x1时,有极大值3.(1)求a,b的值;(2)求函数的极小值;(3)求函数在1,1的最值解y3ax22bx,当x1时,y|x13a2b0,y|x1ab3,即,a6,b9.(2)y6x39x2,y18x218x,令y0,得x0,或x1,y极小值y|x00.(3)由(1)知,函数yf(x)6x39x2,又f(1)15,f(0)0,f(1)3,所以函数的最大值为15,最小值为0. 题型三导数的综合应用例3已知函数f(x)x3ax1.(1)若f(x)在实数集r上单调递增,求a的取值范围;(2)是否存在实数a,使f(x)在(1,1)上单调递减,若存在,求出a的取值范围,若不存在,请说明理由解(1)f(x)3x2a,因为f(x)在r上是增函数,所以f(x)0在r上恒成立即3x2a0在r上恒成立即a3x2,而3x20,所以a0.当a0时,f(x)x31在r上单调递增,符合题意所以a的取值范围是(,0(2)假设存在实数a,使f(x)在(1,1)上单调递减,则f(x)0在(1,1)上恒成立即3x2a0在(1,1)上恒成立,即a3x2,又因为在(1,1)上,03x23,所以a3.当a3时,f(x)3x23,在(1,1)上,f(x)0,所以f(x)在(1,1)上单调递减,即a3符合题意,所以存在实数a,使f(x)在(1,1)上单调递减,且a的取值范围是3,)反思与感悟在已知函数f(x)是增函数(或减函数)求参数的取值范围时,应令f(x)0(或f(x)0)恒成立,解出参数的取值范围(一般可用不等式恒成立来求解),然后检验参数的取值能否使f(x)恒等于0,若不能恒等于0,则参数的这个值应舍去;若f(x)能恒等于0,则由f(x)0(或f(x)0)恒成立解出的参数的取值范围来确定跟踪训练3(1)若函数f(x)4x3ax3的单调递减区间是,则实数a的值是多少?(2)若函数f(x)4x3ax3在上是单调函数,则实数a的取值范围为多少?解(1)f(x)12x2a,f(x)的单调递减区间为,x为f(x)0的两个根,a3.(2)若f(x)在上为单调增函数,则f(x)0在上恒成立,即12x2a0在上恒成立,a12x2在上恒成立,a(12x2)min0.当a0时,f(x)12x20恒成立(只有x0时f(x)0)a0符合题意若f(x)在上为单调减函数,则f(x)0在上恒成立,即12x2a0在上恒成立,a12x2在上恒成立,a(12x2)max3.当a3时,f(x)12x233(4x21)0恒成立(且只有x时f(x)0)因此,a的取值范围为a0或a3.四、自主小测1若函数yx3x2mx1是r上的单调函数,则实数m的取值范围是() a. b. c. d.2设f(x)是函数f(x)的导函数,将yf(x)和yf(x)的图象画在同一个直角坐标系中,不可能正确的是()3设f(x)、g(x)是定义在r上的恒大于0的可导函数,且f(x)g(x)f(x)g(x)0,则当axf(b)g(b) bf(x)g(a)f(a)g(x) cf(x)g(b)f(b)g(x) df(x)g(x)f(a)g(a)4函数f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商场装修合同
- 三水杨酸胆碱镁销售合同3篇
- (翼人2024版)科学一年级上册2.5 简单工具 课件(新教材)
- 瑞典简介课件
- 安全方面培训班名称大全课件
- 理财实战课件
- 改造工程加固方案咨询(3篇)
- 安全教训培训课件
- 房屋工程规划方案(3篇)
- 地铁工程复工方案(3篇)
- 数字货币投资入门指南
- 2024年“学宪法、讲宪法”应知应会题库
- HG-T 5367.5-2022 轨道交通车辆用涂料 第5部分:防结冰涂料
- 原油加工承揽合同
- 基于人工智能的药物不良反应预测与预警系统
- QCT268-2023汽车冷冲压加工零件未注公差尺寸的极限偏差
- 【大数据“杀熟”的法律规制探究17000字(论文)】
- 队列训练齐步的行进与立定
- 初中九年级英语课件宾语从句 公开课比赛一等奖
- 患者安全和护理质量的关联
- 社区获得性肺炎诊治进展
评论
0/150
提交评论