




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习目标1.学习用向量方法解决某些简单的平面几何问题及某些物理学中的问题.2.体会向量是一种处理几何及物理问题的有力工具.3.培养运算能力、分析和解决实际问题的能力知识点一几何性质与向量的关系设a(x1,y1),b(x2,y2),a,b的夹角为.思考1证明线段平行、点共线及相似问题,可用向量的哪些知识?思考2证明垂直问题,可用向量的哪些知识?梳理平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由_表示出来知识点二向量方法解决平面几何问题的步骤1建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为_2通过_,研究几何元素之间的关系,如距离、夹角等问题3把运算结果“_”成几何关系知识点三物理中的量和向量的关系1物理学中的许多量,如力、速度、加速度、位移都是_2物理学中的力、速度、加速度、位移的合成与分解就是向量的_类型一用平面向量求解直线方程例1已知abc的三个顶点a(0,4),b(4,0),c(6,2),点d,e,f分别为边bc,ca,ab的中点(1)求直线de,ef,fd的方程;(2)求ab边上的高线ch所在的直线方程反思与感悟利用向量法解决解析几何问题,首先将线段看成向量,再把坐标利用向量法则进行运算跟踪训练1在abc中,a(4,1),b(7,5),c(4,7),求a的平分线所在的直线方程类型二用平面向量求解平面几何问题例2已知在正方形abcd中,e、f分别是cd、ad的中点,be、cf交于点p.求证:(1)becf;(2)apab.反思与感悟用向量证明平面几何问题的两种基本思路:(1)向量的线性运算法的四个步骤:选取基底用基底表示相关向量利用向量的线性运算或数量积找出相应关系把几何问题向量化(2)向量的坐标运算法的四个步骤:建立适当的平面直角坐标系把相关向量坐标化用向量的坐标运算找出相应关系把几何问题向量化跟踪训练2如图,在正方形abcd中,p为对角线ac上任一点,peab,pfbc,垂足分别为e,f,连结dp,ef,求证:dpef.类型三向量在物理学中的应用例3(1)在重300 n的物体上系两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30,60(如图),求重物平衡时,两根绳子拉力的大小(2)帆船比赛是借助风帆推动船只在规定距离内竞速的一项水上运动,如果一帆船所受的风力方向为北偏东30,速度为20 km/h,此时水的流向是正东,流速为20 km/h.若不考虑其他因素,求帆船的速度与方向反思与感悟利用向量法解决物理问题有两种思路,第一种是几何法,选取适当的基底,将题中涉及的向量用基底表示,利用向量运算法则,运算律或性质计算第二种是坐标法,通过建立平面直角坐标系,实现向量的坐标化,转化为代数运算跟踪训练3河水自西向东流动的速度为10 km/h,小船自南岸沿正北方向航行,小船在静水中的速度为10 km/h,求小船的实际航行速度例4已知两恒力f1(3,4),f2(6,5)作用于同一质点,使之由点a(20,15)移动到点b(7,0)(1)求力f1,f2分别对质点所做的功;(2)求力f1,f2的合力f对质点所做的功反思与感悟物理上的功实质上就是力与位移两矢量的数量积跟踪训练4一个物体受到同一平面内的三个力f1,f2,f3的作用,沿北偏东45的方向移动了8 m,其中|f1|2 n,方向为北偏东30,|f2|4 n,方向为北偏东60,|f3|6 n,方向为北偏西30,求合力f所做的功1已知一个物体在大小为6 n的力f的作用下产生的位移s的大小为100 m,且f与s的夹角为60,则力f所做的功w_ j.2过点a(2,3),且垂直于向量a(2,1)的直线方程为_3用两条成120角的等长的绳子悬挂一个灯具,如图所示,已知灯具重10 n,则每根绳子的拉力大小为_ n.4如图,在平行四边形abcd中,已知ab8,ad5,3,2,则的值是_5如图所示,在abc中,点o是bc的中点过点o的直线分别交直线ab,ac于不同的两点m,n,若m,n,则mn的值为_利用向量方法可以解决平面几何中的平行、垂直、夹角、距离等问题利用向量解决平面几何问题时,有两种思路:一种思路是选择一组基底,利用基向量表示涉及的向量;另一种思路是建立坐标系,求出题目中涉及的向量的坐标答案精析问题导学知识点一思考1可用向量共线的相关知识:ababx1y2x2y10(b0)思考2可用向量垂直的相关知识:abab0x1x2y1y20.梳理向量的线性运算及数量积知识点二1向量问题2.向量运算3.翻译知识点三(1)向量(2)加法运算与减法运算题型探究例1解(1)由已知得点d(1,1),e(3,1),f(2,2),设m(x,y)是直线de上任意一点,则.(x1,y1),(2,2)(2)(x1)(2)(y1)0,即xy20为直线de的方程同理可求,直线ef,fd的方程分别为x5y80,xy0.(2)设点n(x,y)是ch所在直线上任意一点,则.0.又(x6,y2),(4,4)4(x6)4(y2)0,即xy40为所求直线ch的方程跟踪训练1解(3,4),(8,6),a的平分线的一个方向向量为a.设p(x,y)是角平分线上的任意一点,a的平分线过点a,a,所求直线方程为(x4)(y1)0.整理得7xy290.例2证明建立如图所示的平面直角坐标系,设ab2,则a(0,0),b(2,0),c(2,2),e(1,2),f(0,1)(1)(1,2),(2,1)(1)(2)2(1)0,即becf.(2)设点p坐标为(x,y),则(x,y1),(2,1),x2(y1),即x2y2,同理,由,得y2x4,由得点p的坐标为(,)|2|,即apab.跟踪训练2证明设正方形abcd的边长为1,aea(0a1),则epaea,pfeb1a,apa,()()1acos 1801(1a)cos 90aacos 45a(1a)cos 45aa2a(1a)0.,即dpef.例3(1)解如图,两根绳子的拉力之和,且|300 n,aoc30,boc60.在oac中,acoboc60,aoc30,则oac90,从而|cos 30150(n),|sin 30150(n),所以|150(n)答与铅垂线成30角的绳子的拉力是150 n,与铅垂线成60角的绳子的拉力是150 n.(2)解建立如图所示的平面直角坐标系,风的方向为北偏东30,速度为|v1|20(km/h),水流的方向为正东,速度为|v2|20(km/h),设帆船行驶的速度为v,则vv1v2.由题意,可得向量v1(20cos 60,20sin 60)(10,10),向量v2(20,0),则帆船的行驶速度为vv1v2(10,10)(20,0)(30,10),所以|v|20(km/h)因为tan (为v和v2的夹角,且为锐角),所以30,所以帆船向北偏东60的方向行驶,速度为20 km/h.跟踪训练3解设a,b分别表示水流的速度和小船在静水中的速度,过平面内一点o作a,b,以,为邻边作矩形oacb,连结,如图,则ab,并且即为小船的实际航行速度|20(km/h),tan aoc,aoc60,小船的实际航行速度为20 km/h,按北偏东30的方向航行例4解(1)(7,0)(20,15)(13,15),w1f1(3,4)(13,15)3(13)4(15)99(j),w2f2(6,5)(13,15)6(13)(5)(15)3(j)力f1,f2对质点所做的功分别为99 j和3 j.(2)wf(f1f2)(3,4)(6,5)(13,15)(9,1)(13,15)9(13)(1)(15)11715102(j)合力f对质点所做的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- JJF 2317-2025光湿热老化试验箱校准规范
- 2025年浙江省生态环境厅部分直属事业单位招聘7人(第二批)考前自测高频考点模拟试题附答案详解(模拟题)
- 2025北京十一未来城学校春季招聘模拟试卷及1套参考答案详解
- 广汽本田安全驾驶培训课件
- 安全培训教室设备要求课件
- 2025年超深井用高抗挤毁石油管钢项目建议书
- 2025年潍坊职业学院高层次高技能人才引进(招聘)(10人)考前自测高频考点模拟试题及完整答案详解一套
- 山西省【中职专业高考】2025年中职高考对口升学(理论考试)真题卷【轻工纺织大类】模拟练习
- 安全培训教学存在的不足
- 2025年公路旅客运输服务项目发展计划
- 餐饮业食品安全管理与操作规范培训计划
- 拼多多培训课件
- 2025年铜化集团招聘笔试备考题库(带答案详解)
- 环卫车辆安全培训课件
- GB/T 45696-2025公共汽电车场站分类及等级划分
- (2025)中国石油化工集团中石化招聘笔试试题及答案
- 以桂为墨:高中桂花文化校本课程的开发与实践探索
- 2025年计算机二级JAVA考试中的真题练习试题及答案
- 数字政府效能评估体系-洞察阐释
- 三级老年人能力评估师试题(附答案)
- 2025年电力机车钳工(高级)职业技能鉴定理论考试题库(含答案)
评论
0/150
提交评论