人教A版选修22 1.3导数在研究函数中的应用2 学案.doc_第1页
人教A版选修22 1.3导数在研究函数中的应用2 学案.doc_第2页
人教A版选修22 1.3导数在研究函数中的应用2 学案.doc_第3页
人教A版选修22 1.3导数在研究函数中的应用2 学案.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章导数及其应用 1.3导数在研究函数中的应用2 - 学 案一、学习目标1了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用2掌握函数极值的判定及求法3掌握函数在某一点取得极值的条件二、自主学习(1) 函数极值定义一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有点,都有f(x)f(x0),就说f(x0)是函数f(x)的一个 ,记作y极大值=f(x0),x0是 .如果对x0附近的所有的点,都有f(x) f(x0).就说f(x0)是函数f(x)的一个 ,记作y极小值= f(x0),x0是 .极大值与极小值统称为极值.(2) 判别f(x0)是极大、极小值的方法:若满足,且在的两侧的导数 ,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的 ,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是 .(3) 求可导函数f(x)的极值的基本步骤: (1)确定函数的定义区间,求 . (2)求方程f(x)=0的 .(3)用函数的导数为0的点,顺次将函数的定义域分成若干小开区间,并列成表格.检查f(x)在方程根左右的值的 ,如果左正右负,那么f(x)在这个根处取得 ;如果左负右正,那么f(x)在这个根处取得 ;如果左右不改变符号,那么f(x)在这个根处 .三、合作探究题型一 求函数的极值例1 设函数(),其中,求函数的极大值和极小值思路导析: 先求函数的导数,再令导函数为零,求可疑极值点,最后列表判断极值,并求出极值.解:,令,解得或由于,当变化时,的正负如下表:因此,函数在处取得极小值,且;函数在处取得极大值,且规律总结: 该问题既求函数的极大值,又求极小值,需要依据求极值的基本步骤进行.列表判断符号是关键.当两个可疑极值点大小不确定时,需要进行分类讨论.变式训练1已知,函数,求函数在的极值.题型二 函数极值(点)的判定例2 已知函数yf(x)的导函数yf(x)的图象如下图所示,则().a函数f(x)有1个极大值点,1个极小值点b函数f(x)有2个极大值点,2个极小值点c函数f(x)有3个极大值点,1个极小值点d函数f(x)有1个极大值点,3个极小值点思路导析:依据导函数值的符号与函数单调性的关系,判断函数的单调性,再依据单调性判断函数极值.解:由导函数图象可知,当和时,当函数值非负,其余部分导函数值非正,据此可以判断为极大值点, 为极小值点,故该函数f(x)有1个极大值点,1个极小值点.规律总结:由图象性质判断函数的极值,其依据是函数极值的定义,因此,由导函数的性质判断函数的单调性,是解决该类问题的关键所在.变式练习2已知与是定义在上的连续函数,如果与仅当时的函数值为0,且,那么下列情形不可能出现的是( ).a0是的极大值,也是的极大值b0是的极小值,也是的极小值c0是的极大值,但不是的极值d0是的极小值,但不是的极值题型三 已知函数的极值,求参数的值或取值范围例3已知函数图象上的点处的切线方程为若函数在时有极值,求的表达式.思路导析:求函数的解析式,即求参数的值.利用极值的性质和切线的意义建立方程组,解方程组,便可求解.解:,因为函数在处的切线斜率为-3,所以,即(1).得.(2) 函数在时有极值,所以(3),联立方程(1),(2),(3),解得,所以 规律总结: 上述问题中,为了建立方程,充分利用了函数在处有极值的必要条件.在此需要注意一点,一般情况下,对求得的值或范围,需要依据极值点的定义进行检验,以确定取舍.变式练习3设函数,若的极值点,求实数.四、自主小测1. 函数有( ).a. 极小值1,极大值1b. 极小值2,极大值3c.极小值2,极大值2d. 极小值1,极大值32. 已知函数,那么( ). a.没有极值 b.有极小值 c. 有极大值 d.有极大值和极小值3. 下列说法正确的是( ). a. 函数在闭区间上的极大值一定比极小值大; b. 函数在闭区间上的最大值一定是极大值;c. 对于,若,则无极值;d.函数在区间上一定存在最值.4. 若函数y=x3+ax2+bx+27在x=1时有极大值,在x=3时有极小值,则a= ,b= .5. 函数f(x)=x的极大值是 ,极小值是 .6. 设,令,求在内的极值.参考答案1. 答案:d.解析:,令得 ,当时,;当时,;当,,时,当,故选d.2. 答案:c.解析: ,当时, 当时,所以为极大值点.3.答案:c.解析: 由知,当时,判别式小于零,所以无极值.4. 答案:3,9.解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论