




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3.2事件的独立性学习目标1.在具体情境中,了解两个事件相互独立的概念.2.能利用独立事件同时发生的概率公式解决一些简单的实际问题知识点一事件的独立性甲箱里装有3个白球、2个黑球,乙箱里装有2个白球,2个黑球从这两个箱子里分别摸出1个球,记事件a“从甲箱里摸出白球”,事件b“从乙箱里摸出白球”思考1事件a发生会影响事件b发生的概率吗?思考2p(a),p(b),p(ab)的值为多少?思考3p(ab)与p(a),p(b)有什么关系?梳理事件独立的定义一般地,若事件a,b满足_,则称事件a,b独立知识点二事件独立的性质思考1若a,b独立,p(ab)与p(a)p(b)相等吗?思考2若a,b独立,那么a与,与b,与相互独立吗?梳理事件独立的性质及p(ab)的计算公式性质(1)若a,b独立,且p(a)0,则b,a也独立,即a与b_.(2)约定任何事件与必然事件独立,任何事件与不可能事件独立,则两个事件a,b相互独立的充要条件是_概率计算公式(1)若事件a与b相互独立,则a与b同时发生的概率等于事件a发生的概率与事件b发生的概率之积,即p(ab)p(a)p(b)(2)推广 若事件a1,a2,an相互独立,则这n个事件同时发生的概率p(a1a2an)_结论如果事件a与b相互独立,那么_与_,_与_,_与_也都相互独立类型一事件独立性的判断例1分别抛掷两枚质地均匀的硬币,设事件a是“第一枚为正面”,事件b是“第二枚为正面”,事件c是“两枚结果相同”,则下列事件具有相互独立性的有_(填序号)a,b;a,c;b,c.反思与感悟三种方法判断两事件是否具有独立性(1)定义法 直接判定两个事件发生是否相互影响(2)公式法 检验p(ab)p(a)p(b)是否成立(3)条件概率法 当p(a)0时,可用p(b a)p(b)判断跟踪训练1一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令a一个家庭中既有男孩又有女孩,b一个家庭中最多有一个女孩对下列两种情形,讨论a与b的独立性 (1)家庭中有两个小孩;(2)家庭中有三个小孩类型二求相互独立事件的概率引申探究1在本例条件下,求恰有一列火车正点到达的概率2若一列火车正点到达计10分,用表示三列火车的总得分,求p(20)例2小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车是否正点到达互不影响求 (1)这三列火车恰好有两列正点到达的概率;(2)这三列火车至少有一列正点到达的概率反思与感悟明确事件中的“至少有一个发生”“至多有一个发生”“恰好有一个发生”“都发生”“都不发生”“不都发生”等词语的意义一般地,已知两个事件a,b,它们的概率分别为p(a),p(b),那么 (1)a,b中至少有一个发生为事件ab.(2)a,b都发生为事件ab.(3)a,b都不发生为事件 .(4)a,b恰有一个发生为事件ab.(5)a,b中至多有一个发生为事件ab .跟踪训练2甲、乙两人破译一密码,他们能破译的概率分别为和,求两人破译时,以下事件发生的概率 (1)两人都能破译的概率;(2)恰有一人能破译的概率;(3)至多有一人能破译的概率类型三相互独立事件的综合应用例3在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手各位观众要彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)x表示3号歌手得到观众甲、乙、丙的票数之和,求x的概率分布反思与感悟概率问题中的数学思想(1)正难则反 灵活应用对立事件的概率关系(p(a)p()1)简化问题,是求解概率问题最常用的方法(2)化繁为简 将复杂事件的概率转化为简单事件的概率,即寻找所求事件与已知事件之间的关系“所求事件”分几类(考虑加法公式,转化为互斥事件)还是分几步组成(考虑乘法公式,转化为相互独立事件)(3)方程思想 利用有关的概率公式和问题中的数量关系,建立方程(组),通过解方程(组)使问题获解跟踪训练3甲、乙、丙三台机床各自独立加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为.(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙三台机床加工的零件中各取一个进行检验,求至少有一个一等品的概率1甲、乙两水文站同时做水文预报,若甲站、乙站各自预报准确的概率分别为0.8和0.7,那么在一次预报中,甲、乙预报都准确的概率为_2打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击,则他们同时中靶的概率是_3甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球从每袋中任取一个球,则取得同色球的概率为_4在某道路的a,b,c三处设有交通灯,这三盏灯在1分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这段道路上匀速行驶,则三处都不停车的概率为_5甲、乙两名篮球运动员分别进行一次投篮,如果两人投中的概率都是0.6,计算 (1)两人都投中的概率;(2)其中恰有一人投中的概率;(3)至少有1人投中的概率1相互独立事件与互斥事件的区别相互独立事件互斥事件判断方法一个事件的发生与否对另一个事件发生的概率没有影响两个事件不可能同时发生,即ab概率公式a与b相互独立等价于p(ab) p(a)p(b)若a与b互斥,则p(ab)p(a)p(b),反之不成立2.相互独立事件同时发生的概率p(ab)p(a)p(b),即两个相互独立事件同时发生的概率等于每个事件发生的概率的积答案精析问题导学知识点一思考1不影响思考2p(a),p(b),p(ab).思考3p(ab)p(a)p(b)梳理p(a b)p(a)知识点二思考1相等因为p(ab)p(a b)p(b)p(a)p(b)思考2独立梳理相互独立p(ab)p(a)p(b)p(a1)p(a2)p(an)ab题型探究例1解析利用古典概型概率公式计算可得p(a)0.5,p(b)0.5,p(c)0.5,p(ab)0.25,p(ac)0.25,p(bc)0.25.可以验证p(ab)p(a)p(b),p(ac)p(a)p(c),p(bc)p(b)p(c)所以根据事件相互独立的定义,事件a与b相互独立,事件b与c相互独立,事件a与c相互独立跟踪训练1解(1)有两个小孩的家庭,男孩、女孩的可能情形为(男,男),(男,女),(女,男),(女,女),它有4个基本事件,由等可能性知概率都为.这时a(男,女),(女,男),b(男,男),(男,女),(女,男),ab(男,女),(女,男),于是p(a),p(b),p(ab).由此可知p(ab)p(a)p(b),所以事件a,b不相互独立(2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为(男,男,男),(男,男,女),(男,女,男),(男,女,女),(女,男,男),(女,男,女),(女,女,男),(女,女,女)由等可能性知这8个基本事件的概率均为,这时a中含有6个基本事件,b中含有4个基本事件,ab中含有3个基本事件于是p(a),p(b),p(ab),显然有p(ab)p(a)p(b)成立,从而事件a与b是相互独立的例2解用a,b,c分别表示这三列火车正点到达的事件,则p(a)0.8,p(b)0.7,p(c)0.9,所以p()0.2,p()0.3,p()0.1.(1)由题意得a,b,c之间互相独立,所以恰好有两列火车正点到达的概率为p1p(bc)p(ac)p(ab)p()p(b)p(c)p(a)p()p(c)p(a)p(b)p()0.20.70.90.80.30.90.80.70.10.398.(2)三列火车至少有一列正点到达的概率为p21p( )1p()p()p()10.20.30.10.994.引申探究1解恰有一列火车正点到达的概率为p3p(a )p(b)p( c)p(a)p()p()p()p(b)p()p()p()p(c)0.80.30.10.20.70.10.20.30.90.092.2解事件“20”表示“至多两列火车正点到达”,其对立事件为“三列火车都正点到达”,所以p(20)1p(abc)1p(a)p(b)p(c)10.80.70.90.496.跟踪训练2解记事件a为“甲独立地破译出密码”,事件b为“乙独立地破译出密码”(1)两个人都破译出密码的概率为p(ab)p(a)p(b).(2)恰有一人破译出密码分为两类 甲破译出乙破译不出,乙破译出甲破译不出,即ab,p(ab)p(a)p(b)p(a)p()p()p(b).(3)至多有一人破译出密码的对立事件是两人都破译出密码,其概率为1p(ab)1.例3解(1)设a表示事件“观众甲选中3号歌手”,b表示事件“观众乙选中3号歌手”,则p(a),p(b).因为事件a与b相互独立,所以观众甲选中3号歌手且观众乙未选中3号歌手的概率为p(a)p(a)p()p(a)1p(b).(2)设c表示事件“观众丙选中3号歌手”,则p(c),因为x可能的取值为0,1,2,3,且取这些值的概率分别为p(x0)p( ),p(x1)p(a )p(b)p( c),p(x2)p(ab)p(ac)p(bc),p(x3)p(abc).所以x的概率分布如下表 x0123p跟踪训练3解(1)设a,b,c分别为甲,乙,丙三台机床各自加工的零件是一等品的事件由题意得即由得p(b)1p(c),代入得27p(c)251p(c)220,解得p(c)或p(c)(舍去)将p(c)代入,得p(b),将p(b)代入,得p(a).故甲,乙,丙三台机床各自加工的零件是一等品的概率分别是,.(2)记d为从甲、乙、丙三台机床加工的零件中各取一个进行检验,其中至少有一个一等品的事件,则p(d)1p()11p(a)1p(b)1p(c)1.故从甲、乙、丙加工的零件中各取一个进行检验,至少有一个一等品的概率为.当堂训练10.562.3.4.5解(1)设a表示事件“甲投篮一次并且投中”,b表示事件“乙投篮一次并且投中”,则ab表示事件“两人各投篮一次并且都投中”由题意可知,事件a与事件b相互独立,p(ab)p(a)p(b)0.60.60.36.(2)事件“两人各投篮一次,恰好有一人投中”包括两种情况 一种是甲投中,乙未投中(事件a发生);另一种是甲未投中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 象棋班课件教学课件
- 谢建新汽车构造课件
- 2025版外籍项目经理项目合作合同范本
- 2025版企业年会导演聘用合同
- 2025房地产合伙人合同:房地产大数据分析合作协议
- 2025年信息技术产品全国分销授权合同
- 2025年度石材工程承包与监理服务合同
- 2025年度房屋买卖合同纠纷解决条款范本
- 2025年度城市规划调整项目房屋拆迁补偿购房合同
- 2025年别墅吊顶定制与施工一体化合同
- 中级注册安全工程师《法律法规》试题及答案
- 2025年汽车转向系统行业需求分析及创新策略研究报告
- 2025年四川省成都市高新区事业单位招聘考试综合类面试真题模拟试卷
- GB/T 7251.10-2025低压成套开关设备和控制设备第10部分:规定成套设备的指南
- 2025年秋统编版语文二年级上册全册课件(课标版)
- 七下期末人教版数学试卷
- 2025新疆巴音郭楞州和硕县面向社会招聘社区工作者7人笔试参考题库附答案解析
- 2025年六安市裕安区石婆店镇公开招考村级后备干部8名笔试备考试题及答案解析
- 2025年事业单位考试题库及参考答案
- 2025年公安机关人民警察(基本级)执法资格等级题库及答案
- 物流客服培训课件
评论
0/150
提交评论