八年级数学下册第一章三角形的证明2直角三角形教案(新版)北师大版.docx_第1页
八年级数学下册第一章三角形的证明2直角三角形教案(新版)北师大版.docx_第2页
八年级数学下册第一章三角形的证明2直角三角形教案(新版)北师大版.docx_第3页
八年级数学下册第一章三角形的证明2直角三角形教案(新版)北师大版.docx_第4页
八年级数学下册第一章三角形的证明2直角三角形教案(新版)北师大版.docx_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

直角三角形课题直角三角形(第一课时)课型新授课教学目标1知识目标:(1)掌握直角三角形的性质定理(勾股定理)及判定定理的证明方法,并能应用定理解决与直角三角形有关的问题。(2)结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立,其逆命题不一定成立2能力目标: (1)进一步经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维(2)进一步掌握推理证明的方法,发展演绎推理的能力重点难点重点:了解勾股定理及其逆定理的证明方法结合具体例子了解逆命题的概念,识别两个互逆命题,知道原命题成立,其逆命题不一定成立难点:勾股定理及其逆定理的证明方法教具准备学生课前准备:一张等腰三角形纸片(供上课折叠实验用);课时安排1课时教学过程与教学内容教学方法与学法1:创设情境,引入新课通过问题1,让学生在解决问题的同时,回顾直角三角形的一般性质。问题1一个直角三角形房梁如图所示,其中BCAC, BAC=30,AB=10 cm,CB1AB,B1CAC1,垂足分别是B1、C1,那么BC的长是多少? B1C1呢?解:在RtABC中,CAB=30,AB=10 cm,BCAB105 cmCB1AB,B+BCB190又A+B90BCB1 A30在RtACB1中,BB1BC5 cm25 cmAB1ABBB1102.57.5(cm)在RtC1AB1中,A30B1C1 AB1 7.53.75(cm)解决这个问题,主要利用了上节课已经证明的“30角的直角三角形的性质”由此提问:“一般的直角三角形具有什么样的性质呢?”从而引入勾股定理及其证明。教材中曾利用数方格和割补图形的方法得到了勾股定理如果利用公理及由其推导出的定理,能够证明勾股定理吗?请同学们打开课本P18,阅读“读一读”,了解一下利用教科书给出的公理和推导出的定理,证明勾股定理的方法2:讲述新课阅读完毕后,针对“读一读”中使用的两种证明方法,着重讨论第一种,第二种方法请有兴趣的同学课后阅读(1)勾股定理及其逆定理的证明已知:如图,在ABC中,C90,BCa,ACb,ABc求证:a2+b2c2证明:延长CB至D,使BDb,作EBDA,并取BEc,连接ED、AE(如图),则ABCBEDBDE90,EDa(全等三角形的对应角相等,对应边相等)四边形ACDE是直角梯形S梯形ACDE(a+b)(a+b) (a+b)2ABE180(ABCEBD)1809090,ABBESABEc2S梯形ACDESABE+SABC+SBED,(a+b) 2 c2 + ab + ab, 即a2 + ab + b2c2 + ab,a2+b2c2教师用多媒体显示勾股定理内容,用课件演示勾股定理的条件和结论,并强调具体如下:勾股定理:直角三角形两直角边的平方和等于斜边的平方反过来,如果在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论你能证明此结论吗?师生共同来完成已知:如图:在ABC中,AB2+AC2BC2求证:ABC是直角三角形分析:要从边的关系,推出A90是不容易的,如果能借助于ABC与一个直角三角形全等,而得到A与对应角(构造的三角形的直角)相等,可证证明:作RtABC,使A90,ABAB,AC、AC(如图),则AB2AC2.(勾股定理)AB2AC2BC2,ABAB,ACBC2BC2BCBCABCABC(SSS)AA90(全等三角形的对应角相等)因此,ABC是直角三角形总结得勾股逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形(2)互逆命题和互逆定理观察上面两个命题,它们的条件和结论之间有怎样的关系?在前面的学习中还有类似的命题吗?通过观察,学生会发现:上面两个定理的条件和结论互换了位置,即勾股定理的条件是第二个定理的结论,结论是第二个定理的条件这样的情况,在前面也曾遇到过例如“两直线平行,内错角相等”,交换条件和结论,就得到“内错角相等,两直线平行”又如“在直角三角形中,如果一个锐角等于30,那么它所对的直角边就等于斜边的一半”交换此定理的条件和结论就可得“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30”。3:议一议观察下面三组命题:学生以分组讨论形式进行,最后在教师的引导下得出命题与逆命题的区别与联系。让学生畅所欲言,体会逆命题与命题之间的区别与联系,要能够清晰地分别出一个命题的题设和结论,能够将一个命题写出“如果;那么”的形式,以及能够写出一个命题的逆命题。活动中,教师应注意给予适度的引导,学生若出现语言上不严谨时,要先让这个疑问交给学生来剖析,然后再总结。活动时可以先让学生观察下面三组命题: 如果两个角是对顶角,那么它们相等如果两个角相等,那么它们是对顶角如果小明患了肺炎,那么他一定发烧如果小明发烧,那么他一定患了肺炎三角形中相等的边所对的角相等三角形中相等的角所对的边相等上面每组中两个命题的条件和结论也有类似的关系吗?与同伴交流不难发现,每组第二个命题的条件是第一个命题的结论,第二个命题的结论是第一个命题的条件在两个命题中,如果一个命题条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题,相对于逆命题来说,另一个就为原命题再来看“议一议”中的三组命题,它们就称为互逆命题,如果称每组的第一个命题为原命题,另一个则为逆命题请同学们判断每组原命题的真假逆命题呢?在第一组中,原命题是真命题,而逆命题是假命题在第二组中,原命题是真命题,而逆命题是假命题在第三组中,原命题和逆命题都是真命题由此我们可以发现:原命题是真命题,而逆命题不一定是真命题4:想一想要写出原命题的逆命题,需先弄清楚原命题的条件和结论,然后把结论变换成条件,条件变换成结论,就得到了逆命题请学生写出命题“如果两个有理数相等,那么它们的平方相等”的逆命题吗?它们都是真命题吗?从而引导学生思考:原命题是真命题吗?逆命题一定是真命题吗? 并通过具体的实例说明。如果有些命题,原命题是真命题,逆命题也是真命题,那么我们称它们为互逆定理.其中逆命题成为原命题(即原定理)的逆定理 能举例说出我们已学过的互逆定理?如我们刚证过的勾股定理及其逆定理,“两直线平行,内错角相等”与“内错角相等,两直线平行”“全等三角形对应边相等”和“三边对应相等的三角形全等”、“等边对等角”和“等角对等边”等5:随堂练习说出下列命题的逆命题,并判断每对命题的真假;(1)四边形是多边形;(2)两直线平行,内旁内角互补;(3)如果ab0,那么a0, b0分析互逆命题和互逆定理的概念,学生接受起来应不会有什么困难,尤其是对以“如果那么”形式给出的命题,写出其逆命题较为容易,但对于那些不是以这种形式给出的命题,叙述其逆命题有一定困难可先分析命题的条件和结论,然后写出逆命题解:(1)多边形是四边形原命题是真命题,而逆命题是假命题(2)同旁内角互补,两直线平行原命题与逆命题同为正(3)如果a0,60,那么ab0原命题是假命题,而逆命题是真命题6:课时小结这节课我们了解了勾股定理及逆定理的证明方法,并结合数学和生活中的例子了解逆命题的概念,会识别两个互逆命题,知道,原命题成立,其逆命题不一定成立,掌握了证明方法,进一步发展了演绎推理能力7:课后作业习题15第1、2、3、4题让学生在回顾的基础上,自主地寻求命题的证明板 书1、 勾股定理及逆定理的证明。2、 互逆命题:课题直角三角形(第二课时)课型新授课教学目标1知识目标:能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性利用“HL定理解决实际问题2能力目标:进一步掌握推理证明的方法,发展演绎推理能力重点难点重点:探索证明等腰三角形性质定理的思路与方法,掌握证明的基本要求和方法;难点:明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。教具准备学生课前准备:一张等腰三角形纸片(供上课折叠实验用);课时安排1课时教学过程与教学内容教学方法与学法1:复习提问1.判断两个三角形全等的方法有哪几种?2.已知一条边和斜边,求作一个直角三角形。想一想,怎么画?同学们相互交流。3、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。我们曾从折纸的过程中得到启示,作了等腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“等边对等角”。那么我们能否通过作等腰三角形底边的高来证明“等边对等角”要求学生完成,一位学生的过程如下:已知:在ABC中, AB=AC 求证:B=C证明:过A作ADBC,垂足为C,ADB=ADC=90又AB=AC,AD=AD,ABDACD B=C(全等三角形的对应角相等)在实际的教学过程中,有学生对上述证明方法产生了质疑。质疑点在于“在证明ABDACD时,用了“两边及其中一边的对角对相等的两个三角形全等”而我们在前面学习全等的时候知道,两个三角形,如果有两边及其一边的对角相等,这两个三角形是不一定全等的可以画图说明(如图所示在ABD和ABC中,AB=AB,B=B,AC=AD,但ABD与ABC不全等)” 也有学生认同上述的证明。教师顺水推舟,询问能否证明:“在两个直角三角形中,直角所对的边即斜边和一条直角边对应相等的两个直角三角形全等”,从而引入新课。2:引入新课(1)“HL”定理由师生共析完成已知:在RtABC和RtABC中,C=C=90,AB=AB,BC=BC求证:RtABCRtABC证明:在RtABC中,AC=AB2一BC2(勾股定理)又在Rt A B C中,A C =AC=AB2一BC2 (勾股定理)AB=AB,BC=BC,AC=ACRtABCRtABC (SSS)教师用多媒体演示:定理 斜边和一条直角边对应相等的两个直角三角形全等 这一定理可以简单地用“斜边、直角边”或“HL”表示 从而肯定了第一位同学通过作底边的高证明两个三角形全等,从而得到“等边对等角”的证法是正确的 练习:判断下列命题的真假,并说明理由:(1)两个锐角对应相等的两个直角三角形全等; (2)斜边及一锐角对应相等的两个直角三角形全等; (3)两条直角边对应相等的两个直角三角形全等; (4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等 对于(1)、(2)、(3)一般可顺利通过,这里教师将讲解的重心放在了问题(4),学生感觉是真命题,一时有无法直接利用已知的定理支持,教师引导学生证明已知:RABC和RtAB C,C=C=90,BC=BC,BD、BD分别是AC、AC边上的中线且BDBD (如图)求证:RtABCRtABC证明:在RtBDC和RtBDC中,BD=BD,BC=BC,RtBDCRtB D C (HL定理)CD=CD又AC=2CD,A C =2C D ,AC=AC在RtABC和RtA B C 中,BC=BC ,C=C =90,AC=AC ,RtABCCORtABC(SAS)通过上述师生共同活动,学生板书推理过程之后可发动学生去纠错,教师最后再总结。3:做一做问题 你能用三角尺平分一个已知角吗? 请同学们用手中的三角尺操作完成,并在小组内交流,用自己的语言清楚表达自己的想法(设计做一做的目的为了让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证明过程写出来。)4:议一议如图,已知ACB=BDA=90,要使ACBBDA,还需要什么条件?把它们分别写出来 这是一个开放性问题,答案不唯一,需要我们灵活地运用公理和已学过的定理,观察图形,积极思考,并在独立思考的基础上,通过同学之间的交流,获得各种不同的答案(教师一定要提供时间和空间,让同学们认真思考,勇于向困难提出挑战)5: 例题学习如图,在ABCABC中,CD,CD分别分别是高,并且ACAC,CD=CDACB=ACB求证:ABCABC分析:要证ABCABC,由已知中找到条件:一组边AC=AC,一组角ACB=ACB如果寻求A=A,就可用ASA证明全等;也可以寻求么B=B,这样就有AAS;还可寻求BC=BC,那么就可根据SAS注意到题目中,通有CD、CD是三角形的高,CD=CD观察图形,这里有三对三角形应该是全等的,且题目中具备了HL定理的条件,可证的RtADCRtADC,因此证明A=A 就可行证明:CD、CD分别是ABCABC的高(已知),ADC=ADC=90在RtADC和RtADC中,AC=AC(已知),CD=CD (已知),RtADCRtADC (HL)A=A,(全等三角形的对应角相等)在ABC和ABC中,A=A (已证),AC=AC (已知),ACB=ACB (已知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论